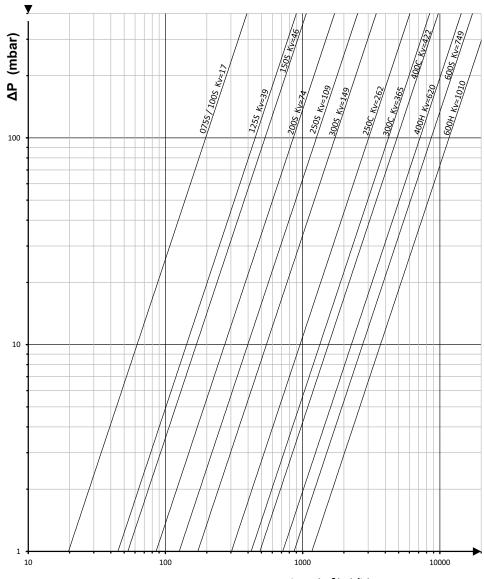

Valve sizing charts

Approximate pressure drops for various valve sizes and flows may be determined by using this graph.

W W W . M A X O N C O R P . C O M


COMBUSTION SYSTEMS FOR INDUSTRY

Maxon reserves the right to alter specifications and data without prior notice. \circledast 2011 Copyright Maxon Corporation. All rights reserved.

Valve sizing charts

Approximate pressure drops for various valve sizes and flows may be determined by using this graph.

Flow (m³(st)/h) - Natural Gas (s.g. = 0.65)

$$Q_2 = Q_1 \times \sqrt{\frac{\Delta P_2}{\Delta P_1} \times \frac{P_2}{P_1} \times \frac{(T_1 + 273)}{(T_2 + 273)} \times \frac{S.G_{\cdot 1}}{S.G_{\cdot 2}}}$$

Key:

- $Q_1 = Given Flow from Chart (m³(st)/h)$
- ΔP_1 = Pressure Drop from Chart (mbar)
- P₁ = 1 bar absolute
- T₁= 21.1°C
- S.G.1 = 0.65 (Natural Gas)

- $Q_2 = Flow (m^3(st)/h)$
- ΔP_2 = Pressure Drop (mbar)
- P₂= Outlet Pressure (bar absolute)
- T₂ = Outlet Flowing Temperature (°C)
- S.G.₂ = Specific gravity of gas when related to air at 70°F and 14.7 psia (Air = 1.0)

W W W . M A X O N C O R P . C O M

COMBUSTION SYSTEMS FOR INDUSTRY

Maxon reserves the right to alter specifications and data without prior notice. \circledast 2011 Copyright Maxon Corporation. All rights reserved.

