

Messblende VMO

Technische Information · D **3** Edition 12.18

- Einsatz als Mess- oder Drosselblende
- Mit valVario Ventilen und Reglern kombinierbar
- Luft- und Gasvolumenstromdiagramme für einfachere Auslegung
- Einfache Montage über Flansche mit Innengewinde
- Austauschbare Blendenscheiben für optimale Anpassung an örtliche Betriebsbedingungen

Inhaltsverzeichnis

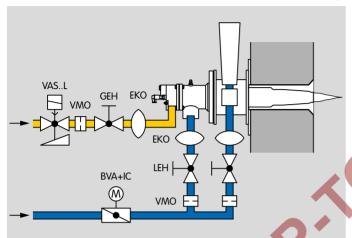
Messblende VMO	1
Inhaltsverzeichnis	
1 Anwendung	
1.1.1 Rekuperatorbrenner in der direkten Beheizung	4
1.1.2 Stetige Regelung mit pneumatischem Verbund .	4
1.1.3 Stetige oder stufige Volumenstromregelung	
2 Zertifizierung	
3 Funktion	
4 Volumenstrom	
4.1 VMO 110, VMO 115, VMO 120	
4.2 VMO 125, VMO 232	
4.3 VMO 240, VMO 250	
4.4 VMO 340, VMO 350	
4.5 VMO 365	X.12
4.6 k _V -Wert	
5 Auswahl	
5.1 Typenschlüssel	15
6 Projektierungshinweise 6.1 Einbau	16
6.1 Einbau	16
6.2 Gasstreckenanbindung	16
7 Zubehör	17
7.1 Dichtungsset VMO/VMV	1/
7.2 Blendenscheibe	17
8 Technische Daten	
8.1 Baumaße 8.1.1 VMOR	
8.1.2 VMON	
8.1.3 VMO 240F	
9 Wartung	21
Rückmeldung	22

Kontakt..

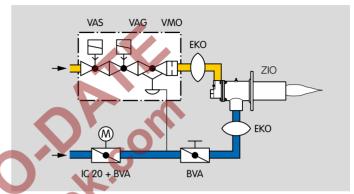
1 Anwendung

Die valVario Messblende VMO wird in Gasregel- und Sicherheitsstrecken, sowie in Luftstrecken, in der industriellen oder gewerblichen Gaswärmeerzeugung eingebaut. In Verbindung mit den valVario Gasmagnet- und Gasregelventilen kann sie als Drosselblende verwendet werden.

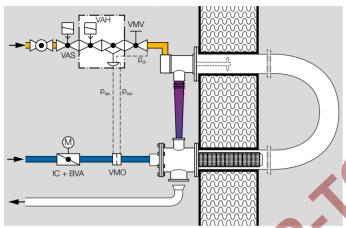
Die Messpunkte befinden sich im Gehäuse der Messblende. Die Messblende VMO ist eine günstige Alternative in Bereichen, in denen keine Normmessblende eingesetzt werden muss. Die auswechselbaren Blendenscheiben mit unterschiedlichen Bohrungen ermöglichen eine optimale Anpassung an die örtlichen Betriebsbedingungen.



Schachtschmelzofen


Nachverbrennungsanlage für thermisch-regenerative Abluft-reinigung Anwendungsbeispiele

1.1.1 Rekuperatorbrenner in der direkten Beheizung


Rekuperatorbrenner in der direkten Beheizung mit Eduktor zur Evakuierung der Abgase aus dem Ofen. Der Eduktor erzeugt mit einer zentral angeordneten Düse einen Unterdruck und saugt somit die Abgase aus dem Ofenraum über den Wärmetauscher des Brenners. Die Messblenden VMO dienen zur Erfassung des Gas- und Luftvolumenstroms.

1.1.2 Stetige Regelung mit pneumatischem Verbund

Bei dieser Regelung kann die Gemischeinstellung über einen hohen Regelbereich bei gleichzeitiger Luftmangelsicherung konstant gehalten werden. Eingesetzt wird die Regelung z. B. in Schmelzöfen der Aluminiumindustrie oder an Anlagen der regenerativen Nachverbrennung in der Umweltindustrie. Hier dient die Messblende VMO zur Erfassung des Gasvolumenstroms.

1.1.3 Stetige oder stufige Volumenstromregelung

Diese Anwendung zeigt die Volumenstromregelung für ein Strahlrohr-Brennersystem mit Plug-in-Rekuperator zur Luftvorwärmung.

Es entstehen temperaturabhängige Druckverluste der Luft im Rekuperator. Das Verhältnis von Gas- zu Luftdruck ist nicht konstant. Der schwankende Luftvolumenstrom wird an der Messblende VMO erfasst und der VAH regelt den Gasvolumenstrom proportional.

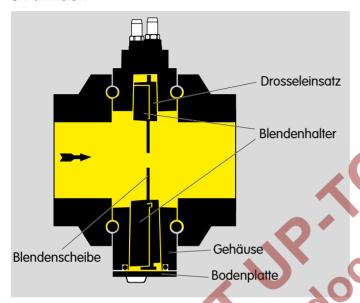
Mit dem Feineinstellglied VMV kann das Luftverhältnis (Lambda) eingestellt werden.

2 Zertifizierung

EU-zertifiziert nach

(E

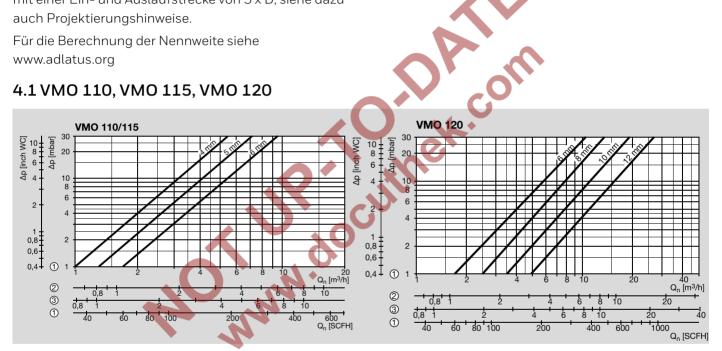
Erfüllt die Anforderungen der


- Niederspannungsrichtlinie (2014/35/EU),
- EMV-Richtlinie (2014/30/EU).

Verordnung:

- Gasgeräteverordnung (EU) 2016/426

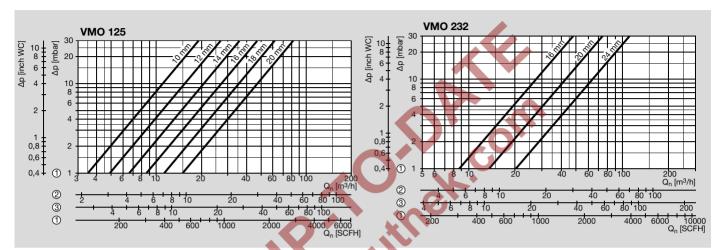
3 Funktion


Im Gehäuse der VMO sitzt ein Blendenhalter mit einer Blendenscheibe. In der Blendenscheibe befindet sich eine Bohrung, durch die das Gas strömen kann. Ein umlaufende Dichtung am Drosseleinsatz reduziert den Leckvolumenstrom. Für einen Austausch der Blendenscheibe kann die Bodenplatte vom Gehäuse abgeschraubt werden, um den Blendenhalter mit der Blendenscheibe aus dem Gehäuse zu ziehen.

4 Volumenstrom

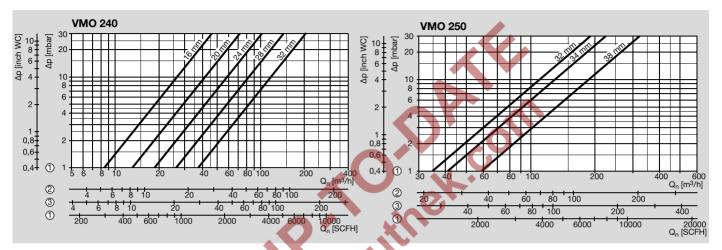
Gemessen werden die Kennlinien an den Messstutzen bei 15 °C (59 °F) für die einzelnen Blendenscheiben mit einer Ein- und Auslaufstrecke von 5 x D. siehe dazu auch Projektierungshinweise.

Für die Berechnung der Nennweite siehe www.adlatus.org


4.1 VMO 110, VMO 115, VMO 120

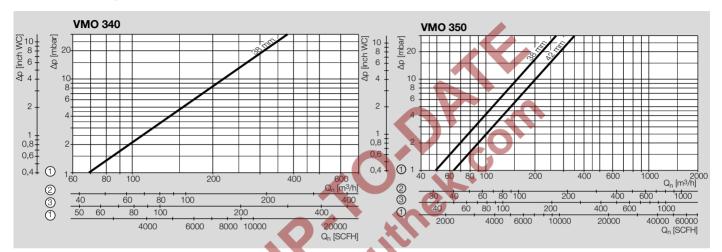
Legende

- (1) = Erdgas (ρ = 0,80 kg/m³)
- (2) = Propan (ρ = 2,01 kg/m³)
- (3) = Luft (ρ = 1,29 kg/m³)


4.2 VMO 125, VMO 232

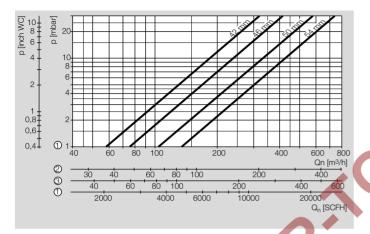
Legende

- (1) = Erdgas (ρ = 0,80 kg/m³)
- (2) = Propan (ρ = 2,01 kg/m³)
- (3) = Luft (ρ = 1,29 kg/m³)


4.3 VMO 240, VMO 250

Legende

- (1) = Erdgas (ρ = 0,80 kg/m³)
- **2** = Propan (ρ = 2,01 kg/m³)
- (3) = Luft (ρ = 1,29 kg/m³)


4.4 VMO 340, VMO 350

Legende

- (1) = Erdgas (ρ = 0,80 kg/m³)
- **2** = Propan (ρ = 2,01 kg/m³)
- (3) = Luft (ρ = 1,29 kg/m³)

4.5 VMO 365

Legende

- (1) = Erdgas (ρ = 0,80 kg/m³)
- ② = Propan (ρ = 2,01 kg/m³)
- 3 = Luft (ρ = 1,29 kg/m³)

VMO · Edition 12.18

12

4.6 k_V-Wert

Die Messblende wird mit Hilfe des Volumenstromdiagrammes oder rechnerisch mittels des kv-Wertes bestimmt. Die k_V -Werte sind gemittelte Werte aus den gemessenen Volumenstromdiagrammen.

Messblende	Flansch Nennweite	Bohrungs-∅ Blendenscheibe [mm]	k _V [m³/h]
VMO 110	DN 10	5 6	0,95 1,2 1,6
VMO 115	DN 15	5 6	0,9 1,2 1,6
VMO 120	DN 20	6 8 10 12	1,55 2,25 3,2 4,5
VMO 125	DN 25	10 12 14 16 18 20	3,2 4,5 6,0 7,9 10,3 13,7
VMO 232	DN 32	16 20 24	8,0 12,4 18,6
VMO 240	DN 40	16 20 24 28 32	7,7 12,0 17,0 24,0 34,0
VMO 250	DN 50	32 34 38	31,8 37,5 54,0
VMO 340	DN 40	38	67,0
VMO 350	DN 50	38 42	50,0 64,0
VMO 365	DN 65	42 46 50 54	66,0 61,0 80,0 97,0

 $Q_{(n)}$ = Volumenstrom (Normzustand) [m³/h]

k_V = Ventilkoeffizient (siehe Tabelle)

 $\Delta p = Druckverlust[bar]$

p_d = Ausgangsdruck (absolut) [bar]

 ρ_n = Dichte [kg/m³] (Luft 1,29/Erdgas 0,80/Propan 2,01/Butan 2,71)

T = Mediumtemperatur (absolut) [K]

$$Q_{(n)} = 514 \cdot \sqrt{\frac{\rho_n \cdot T}{\Delta p \cdot \rho_d}} \qquad Q_{(n)} = 514 \cdot k_v \cdot \sqrt{\frac{\Delta p \cdot p_d}{\rho_n \cdot T}}$$

$$\Delta p = \left(\frac{Q_{(n)}}{514 k_v}\right)^2 \cdot \frac{\rho_n \cdot T}{\rho_d}$$

Volumenstrom

Beispiel

Gesucht wird der Bohrungs-Ø der Blendenscheibe und die Flansch-Nennweite für eine Messblende VMO.

Gegeben ist der max. Volumenstrom $Q_{(n)\,max}$, der Ausgangsdruck p_d und die Temperatur T für das Medium Erdgas.

$$Q_{(n) \text{ max.}} = 37 \text{ m}^3/\text{h}$$

$$p_d = 30 \text{ mbar} = 0.03 \text{ bar} \Rightarrow$$

 $p_{d \, absolut} = 0.03 \, bar + 1 \, bar = 1.03 \, bar$

 $\Delta p_{\text{max.}} = 0.01 \text{ bar (gewünscht)}$

$$T = 20 \, ^{\circ}C \Rightarrow$$

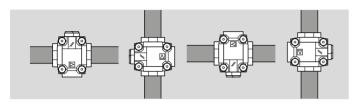
 $T_{absolut} = 20 + 273 K = 293 K$

$$k_v = \frac{37}{514} \cdot \sqrt{\frac{0.83 \cdot 293}{0.01 \cdot 1.03}} = 11.1 \text{ m}^3/\text{h}$$

Gewählt wird die Messblende mit dem nächst größeren k_v -Wert (siehe Tabelle): z. B. VMO 125 mit 20 mm Bohrungs-Ø der Blendenscheibe.

5 Auswahl

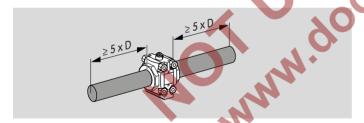
Тур	R	N	F	05	М	04	05	06	08	10	12	14	16	18	20	24	28	32	34	38	42	46	50	54
VMO 110	, A	0	'	05	IVI	0-7	•	•	-00	-10	12			Ξ0		-		32	J7	30	-74	-10	30	JT
VMO 115	•	0		•	•	•		•								V								
VMO 120	•	0		•	•			•	•	•	•													
VMO 125	•	0		•	•					•	•		•											
VMO 232	•	0		•	•									V		•	-							
VMO 240	•	0	0	•	•								0		•	•	(0)							
VMO 250	•	0		•	•													•	•	•				
VMO 340	•	0		•	•							T								•				
VMO 350	•	0	0	•	•									\1						•	•			
VMO 365	•	0		•																	•		•	•
● = Standard, ○ Bestellbeispiel VMO 115R05M0		erbar											U	9										
5.1 Typens	chlü	isse	l								G													
Code									chreib															
VMO								M	essble	ende														


5.1 Typenschlüssel

Code	Beschreibung
VMO	Messblende
1-3	Baugröße
- 10-65	Öhne Eingangs- und Ausgangsflansch Ein- und Ausgangsnennweite in DN
R N F	Rp-Innengewinde NPT-Innengewinde Flansch nach ISO 7005
05	p _{u max} 500 mbar
М	Mit Messstutzen
04 – 54	Blendendurchmesser* in mm

Auf Anfrage Lieferung von Blendenscheiben mit individuellem Blenden-Ø.

6 Projektierungshinweise


6.1 Einbau

Einbaulage: VMO kann beliebig eingebaut werden.

6.2 Gasstreckenanbindung

Für eine korrekte Messung der Druckdifferenz an der Messblende VMO muss auf einer Strecke von ≥ 5× D für eine ungestörte Anströmung des Gases am Ein- und Ausgang gesorgt werden.

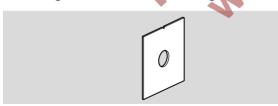
7 Zubehör

7.1 Dichtungsset VMO/VMV

Dichtungsset VMO/VMV 1 /B: 74924936 Dichtungsset VMO/VMV 2 /B: 74924937 Dichtungsset VMO/VMV 3 /B: 74926024

Lieferumfang:

A $1 \times O$ -Ring Bodenplatte,


B 1 xO-Ring Drosseleinsatz,

C 2 x Profildichtung,

D 2 x oder 4x Zylinderschraube.

7.2 Blendenscheibe

Zur Montage im Blendenhalter der Messblende VMO. Der Bohrungs-Ø ist auf der Blendenscheibe eingraviert. Lieferung inklusive neuer Dichtung für die Bodenplatte.

	Blende	Bohrungs-∅	Bestell-Nr.
		[mm]	
	VM01 D4 /B	4	74923803
	VM01 D5 /B	5	74923804
	VM01 D6 /B	6	74923805
	VMO1 D8 /B	8	74923806
	VMO1 D10 /B	10	74923807
	VM01 D12 /B	12	74923808
	VMO1 D14 /B	14	74923809
	VM01 D16 /B	16	74923810
	VM01 D18/B	18	74923811
	VMO1 D20 /B	20	74923812
	VMO1 Dx /B*	XX*	74923813
	VMO2 D16 /B	16	74923814
	VMO2 D20 /B	20	74923815
	VMO2 D24 /B	24	74923816
4	VMO2 D28 /B	28	74923817
1	VMO2 D32 /B	32	74923818
	VMO2 D34 /B	34	74923819
	VMO2 D38 /B	38	74923820
	VMO2 Dx/B	xx*	74923821
	VMO 3 D38 /B	38	74926017
	VMO 3 D42 /B	42	74926018
	VMO 3 D46 /B	46	74926019
	VMO 3 D50 /B	50	74926020
	VMO 3 D54 /B	54	74926021
	VMO 3 Dx/B	XX*	74926022

^{*} Größe des Bohrungs-Ø auf Anfrage.

8 Technische Daten

Gasarten: Erdgas, Flüssiggas (gasförmig), Biogas (max. 0,1 vol.-% H₂S) oder Luft; andere Gase auf Anfrage.

Das Gas muss unter allen Bedingungen trocken sein und darf nicht kondensieren.

Max. Eingangsdruck p_u : max. 500 mbar (7,25 psig).

Medien- und Umgebungstemperatur:

-10 bis +60 °C (14 bis +140 °F),

keine Betauung zulässig.

Lagertemperatur: 0 bis +40 °C (-4 bis +104 °F).

Gehäuse: Aluminium.

Anschlussflansche:

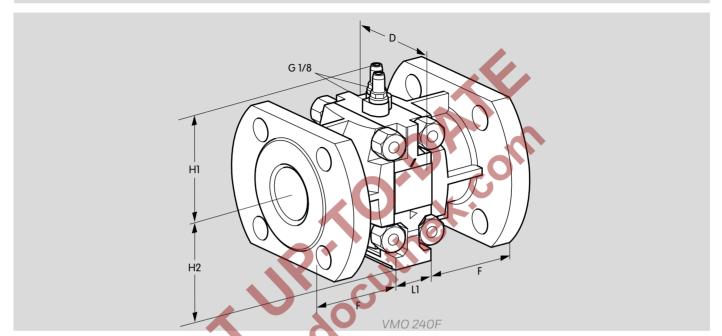

mit Innengewinde: Rp nach ISO 7-1, NPT nach ANSI/

ASME,

mit ISO-Flansch: DN 40 und DN 50 nach ISO 7005.

8.1 Baumaße

8.1.1 VMO..R


	Anscl	hluga		Gewicht*				
Тур	Alisti	iluss	L1	F	D	H1	H2	Gewicht
	Rp	DN	mm	mm	mm	mm	mm	kg
VMO 110	3/8	10	30	15	62,7	69,1	44,2	0,245
VMO 115	1/2	15	30	15	62,7	69,1	44,2	0,245
VMO 120	3/4	20	30	23	62,7	69,1	44,2	0,245
VMO 125	1	25	30	23	62,7	69,1	44,2	0,245
VMO 225	1	25	34	29	88	82,8	64,6	0,505
VMO 232	11/4	32	34	29	88	82,8	64,6	0,505
VMO 240	11/2	40	34	29	88	82,8	64,6	0,505
VMO 250	2	50	34	29	88	82,8	64,6	0,505
VMO 340	11/2	40	36	36	106	94,6	77,5	1,3
VMO 350	2	50	36	36	106	94,6	77,5	1,3
VMO 365	21/2	65	36	36	106	94,6	77,5	1,3

^{8.1.2} VMO..N

	Anscl	ماليم		Gewicht*				
Тур	Alisci	iluss	L1 F		D	H1	H2	Gewicht
	NPT	DN	inch	inch	inch	inch	inch	lbs
VMO 110	3/8	10	1,18	0,59	2,47	2,72	1,74	0,54
VMO 115	1/2	15	1,18	0,59	2,47	2,72	1,74	0,54
VMO 120	3/4	20	1,18	0,91	2,47	2,72	1,74	0,54
VMO 125	1	25	1,18	0,91	2,47	2,72	1,74	0,54
VMO 225	1	25	1,34	1,14	3,46	3,26	2,54	1,11
VMO 232	11/4	32	1,34	1,14	3,46	3,26	2,54	1,11
VMO 240	11/2	40	1,34	1,14	3,46	3,26	2,54	1,11
VMO 250	2	50	1,34	1,14	3,46	3,26	2,54	1,11
VMO 340	11/2	40	1,42	1,42	4,17	3,72	3,05	2,86
VMO 350	2	50	1,42	1,42	4,17	3,72	3,05	2,86
VMO 365	21/2	65	1,42	1,42	4,17	3,72	3,05	2,86

^{*} Mit Flansche.

^{*} Mit Flansche.

8.1.3 VMO 240F

	Anschluss		В	Gewicht*			
Тур	Aliscilluss	L1	1	D	H1	H2	Gewicht
	DN	mm	mm	mm	mm	mm	kg
VMO 240	40	34	66	88	81	65,2	0,505
VMO 350	50	36	74	106	94,6	76	1,3

^{*} Mit Flansche.

9 Wartung

Mindestens $1 \times \text{im Jahr}$, bei Betrieb mit Biogas mindestens $2 \times \text{im Jahr}$ auf äußere Dichtheit prüfen.

Rückmeldung

Zum Schluss bieten wir Ihnen die Möglichkeit, diese "Technische Information (TI)" zu beurteilen und uns Ihre Meinung mitzuteilen, damit wir unsere Dokumente weiter verbessern und an Ihre Bedürfnisse anpassen.

Übersichtlichkeit

Information schnell gefunden

Lange gesucht

Information nicht gefunden

Was fehlt?

Keine Aussage

Verwendung

Produkt kennenlernen

Produktauswahl

Projektierung Informationen nachschlagen

Bemerkung

Verständlichkeit

Verständlich

Navigation

Zu kompliziert

Keine Aussage

Ich finde mich zurecht

Keine Aussage

Ich habe mich "verlaufen"

Umfang

Zu wenia

Ausreichend

Zu umfangreich

Keine Aussage

Mein Tätigkeitsbereich

Technischer Bereich

Kaufmännischer Bereich

Keine Aussage

Kontakt

Elster GmbH Postfach 2809 · 49018 Osnabrück Strotheweg 1 · 49504 Lotte (Büren) Deutschland Tel +49 541 1214-0

Fax +49 541 1214-370 hts.lotte@honeywell.com www.kromschroeder.de

Technische Änderungen, die dem Fortschritt dienen vorbehalten Copyright © 2018 Elster GmbH

Die aktuellen Adressen unserer internationalen

www.kromschroeder.de/Weltweit.20.0.html

Alle Rechte vorbehalten.

Vertretungen finden Sie im Internet:

