03251445 1000383429-002-05 **Honeywell**

① (B) (D) (E) (SR) ((Z) → www.docuthek.com

Operating instructions for operators and installers

Electronic index El6

themis ®uno

1

6

6

7

7

7 7

8

Contents

Electronic index El6	1
Contents	1
Safety	
Checking the usage	2
Installation	2
Operating the electronic index	2
Navigating within the menu	3
Service mode	6
Service mode menu overview	6
Test instructions	7
Temperature	7
Conversion	7
Battery diagnosis	
Date and time	
LCD pixel test	
Cyclic test	
GPRS modem status	
Identification & calibration info	
Establishing an optical communications	
Setting the index parameters	
Changing the battery	9
Changing the SIM card	
Releasing the valve	
Check test	
Assistance in the event of malfunction	
Maintenance	
Accessories	
Spare parts	
Technical data	
Logistics	

Safety

Please read and keep in a safe place

Please read through these instructions carefully before installing or operating. Following the installation, pass the instructions on to the operator. This unit must be installed and commissioned in accordance with the regulations and standards in force. These instructions can also be found at www.docuthek.com.

Explanation of symbols

•, 1, 2, 3 ... = Action Instruction

Liability

We will not be held liable for damage resulting from non-observance of the instructions and non-compliant use.

Safety instructions

Information that is relevant for safety is indicated in the instructions as follows:

⚠ DANGER

Indicates potentially fatal situations.

WARNING

Indicates possible danger to life and limb.

! CAUTION

Indicates possible material damage.

All interventions may only be carried out by qualified gas technicians. Electrical interventions may only be carried out by qualified electricians.

Conversion, spare parts

All technical changes are prohibited. Only use OEM spare parts.

Changes to edition 12.17

The following chapters have been changed:

- Checking the usage
- Changing the battery
- Technical data

Checking the usage

Electronic index El6 for diaphragm gas meters BK..ETe

other use is considered as non-compliant.

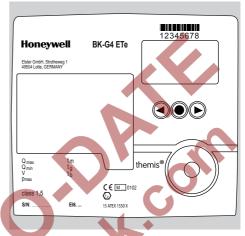
The electronic index El6 displays the volume converted to the base temperature. It can be used for reading out absolute consumption values and for retrieving consumption data for the various tariffs. This function is only guaranteed when used within the specified limits – see page 15 (Technical data). Any

Type code

Code	Description
EI	Electronic index
6.00	Wireless technology: 169 MHz, M-Bus,
	cyclic meter volume V: up to 1.2 dm ³ ,
	connector spacing: up to 130 mm
6.02	Wireless technology: 169 MHz, M-Bus,
	for all other meter sizes
6.01/6.06	Wireless technology: GPRS,
	cyclic meter volume V: up to 1.2 dm ³
	connector spacing: up to 130 mm
0.00/0.0=	W/seleccited and a ODDO
6.03/6.07	Wireless technology: GPRS,

for all other meter sizes

Part designations



- Gas meter with electronic index
- Display
- User keys
- 4 Opto-adapter interface
- 5 Battery cover
- Installation seal/Screw locking cap
- 7 Battery
- SIM card
- Opening for additional sealing of the battery cover
- 10 Lug for sealing the connections

Type label/Index plate

Please quote for all enquiries:

- ➤ The manufacturer's serial number S/N can be found at the bottom of the type label.

ATEX

The electronic index is suitable for use in potentially explosive atmospheres. For the exact use (zone), see ATEX sticker on the diaphragm gas meter or see the operating instructions for diaphragm gas meters BK-G1.6 to BK-G25 → www.docuthek.com.

Installation

Installing the gas meter

For installing the gas meter in the pipework, refer to the operating instructions for diaphragm gas meters BK-G1.6 to BK-G25 → www.docuthek.com.

Gas meter with integrated valve

If the integrated shut-off valve in the gas meter is closed, it must be released, see page 10 (Releasing the valve).

Operating the electronic index

- Press any key briefly.

> A test pattern is shown in the display for 3 s.

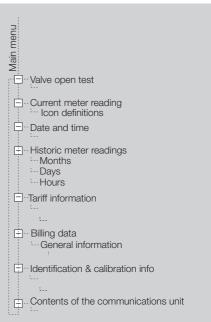
- Menu area
- 2 Information area (optional: tariff)

The main screen appears.

- Status line (symbols)
- ➤ The ON/OFF symbols are only displayed when a valve is integrated in the gas meter.

User keys, selection key and symbols

Navigate through the menu with the user keys
 ▶. ◀ and the selection key ♠.


,	and the selection key .
Symbol ,	Meaning Navigate to the left or the right on each level using the user keys. Briefly pressing the selection key selects a sub-menu. Holding the selection key pressed down switches the display back to the higher-level menu.
•	Briefly pressing the selection key selects a sub-menu.
•	Holding the selection key pressed down switches the display back to the higher-level menu.
\triangleright , \circ , \triangleleft	Keys inactive
(iii)	Radio module or wireless communication active
P	Radio module or wireless communication inactive
p=p	Wireless communication – pairing successful
OFF	Valve/gas flow closed. This symbol is only displayed when a valve is integrated in the gas meter
ON	Valve/gas flow released. This symbol is only displayed when a valve is integrated in the gas meter.
\triangle	Invalid data
A	Fault message
	Low battery. This symbol is only displayed when battery power is low.
*	Marking for metrology-relevant data
<u> </u>	Multiple sensor data invalid

Navigating within the menu

- > The menu is constructed hierarchically.
- Depending on the configuration, some menu options may be missing.
- The "Current meter reading" main screen appears when switching on the index.
- If a different menu is active, the display will automatically change back to the main screen when no user key has been pressed for 30 s, and switches off after a further 30 s.
- Navigate from the main screen to the various menus, such as "Meter information", with the user keys ▶, ◀.

Menu overview

The display can differ depending on the parameterization or communications unit.

- The absolute meter reading and optionally the current tariff are indicated in the main screen.
- > This appears when the index is switched on.

Valve open test

- The "Valve open test" menu option is only displayed if the meter has received a command to open the valve.
- If the valve was released while the display was switched off, the release note will appear the next time the index is switched on.

- ➤ The note remains active until the valve has been released, see page 10 (Releasing the valve).
- If the selection key
 is not pressed, the display will switch back to the main screen after 30 s.

Date and time

- ▷ Information on the date and time display.
- UTC = coordinated universal time + X = offset for conversion to local time.
- Optional summer/winter time changeover.

- The date is given in the format day month year.
- ➤ The date format can differ depending on the market.

Historic meter readings

Consumption data dating as far back as 190 days can be called up.

By pressing the selection key ♠, consumption data are displayed, which are summarized by month, day or hour:

M: month

D: day

H: hour

- ➤ The timeframe is displayed with date and time for the start and end of the period.
- The meter reading is displayed for the start and end of the period in m³.
- The consumption V_b for this period is indicated in m^3 .
- ▷ Example "Daily summary"

Tariff information

This menu contains information on the current tariff program.

By briefly pressing the selection key ●, you can access further information. Here, the active tariff program is displayed, as are the date and time of activation.

Tariff information

· 49 53

From: 12-01-16 06:00 O v:000000.000 m³/h : 12-01-16 07:00

TP = tariff program From = start date

= maximum conventional flow rate Q_v

(Q_{hc max})

= time at which Q_{bc max} occurred

Billing data

> This menu contains information on the current consumption in accordance with the tariff.

By briefly pressing the selection key, you can access further information.

Tariff information

TP : 49.53

From 11-01-16 07:00

: 12-01-16 07:00 : 000000.000 m³/h

: 12-01-16 07:00

end date

Tariff information

: 000000.015 m³ Vb Ta : 000000.000 m³ T1 : 000000.000 m³ T2 : 000000.000 m³ T3 : 000000.015 m³

Vb = converted volume with reference to the temperature

Ta = volume under faulty measuring condi-

T1-T3 = absolute values from the tariff registers


> The data are updated hourly.

Identification & calibration info

Meter-specific technical data are displayed in sub-menus by pressing the user keys . and the selection key .

Information about the software is displayed when pressing the user keys , .

software version

software checksum

Build Rel = software details

= year of manufacture

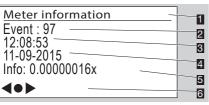
Other screen descriptions (not illustrated):

Calibration information:

Meter calibration parameters Q1 to Q3 (adjustment values Q1 to Q3 for three-point calibration)

Meter properties:

Cyclic meter volume Transitional flow rate


EN 1359 Reg. No.: NG-4701BM0443 (example)

Environment classes: Electromagnetic Mechanical

Firmware traceability

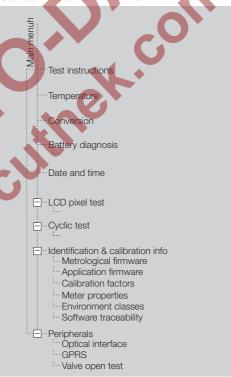
Only events which are relevant for the software history are listed in the "Firmware traceability"

- Menu area
- Event: event which has occurred:
 - Activation date for software update programmed
 - 98 Verification of software update successful
 - 99 Verification of software update failed
 - 100 Activation of software update successful
 - 101 Activation of software update failed
- Time at which the event occurred
- 4 Date on which the event occurred
- 5 Info: additional data
- Navigation symbols

Contents of the communications unit

GPRS StCon: OFF GSM.N: apn.gprs **IPAdr** : 127.0.0.1 L.Err **4**0D OFF

StCon = connection status of the GPRS module GSM.N= Internet address of the access point


IPAdr = IP address of the communications partner L.Err = information about the last connection error

Service mode

Activating Service mode

- 1 Press the selection key and hold down.
- A pixel will appear in each corner of the display.
- 2 Observe one pixel: hold the selection key pressed down while the pixel is visible. Release the key as soon as the pixel has disappeared.
- 3 Repeat the process, until all the pixels are off and "Test instructions" appears in the menu area.
- Service mode is activated.
- For some actions such as programming the index or actuating individual components (e.g. when changing the battery), the user software has to be adapted to the index. Please contact the manufacturer.

Service mode menu overview

Test instructions

Automatic return to main menu after 5 minutes of inactivity. Hold ● on any screen to return immediately

Temperature

*Temperature 1/2

tg : 18.03°C t ths : [-25, 55]°C TC : electronic tsp : 20°C tb : 15°C

40

tg

= currently measured gas temperature

t ths

= max. allowable gas temperature range [min. value, max. value]

TC

= type of temperature conversion. Electronic; mathematical conversion to the inindex

tsp

= specified centre temperature t_{sp} (in accordance with EN 1359)

tb

= base temperature t_b (in accordance with EN 1359)

You can display additional temperature information by pressing the selection key ●.

Temperature 2/2

tg t ths : 18.03°C : [-25, 55]°C

t mean

: 22.09°C : 12.85°C

t max

: 26.25°C

t mean = average temperature

t min = minimum temperature measured

t max = maximum temperature measured

- Check test for temperature measurement, see page 10 (Check test).
- The measured values are updated once per minute.

Conversion

▷ Conversion information is displayed.

Conversion
Vc: 0.005m³
Vu: 0.006m³
Flow: 0 l/h
tg: 21.16°C
Cf: 0.979090

◆◆

 $\begin{array}{lll} \text{Vc} & = \text{converted volume} \\ \text{Vu} & = \text{non-converted volume} \\ \text{Flow} & = \text{current flow rate} \\ \text{tg} & = \text{current temperature} \\ \text{Cf} & = \text{conversion factor } C_{\text{f}} = (T_{\text{b}}/T_{\text{o}}) \\ \end{array}$

Battery diagnosis

There are two batteries in the index. In addition to the batteries, there is an accumulator (HLC) which is charged by the batteries.

There are four different menus for battery diagnosis.

Information about the battery is displayed (display 1/4: main battery, display 2/4: replacement battery).

Main battery 1/4

Install. date : 05-11-2055 Capacity : 19000000 uAh Charge : 99.999969 %

Use : 0 h
In use : yes

Install. date Capacity Charge Use

In use:

date of installationinitial capacity

= remaining battery capacity

= time of use in hours

yes = the battery is in use, no = the battery is not in use. The next display 3/4 contains data for battery diagnosis.

Vcc

= indicates the current voltage measured on the battery or HLC.

V(min)

= indicates the minimum voltage measured on the battery or HLC.

Status

 OK: the battery voltage is adequate.
 Substitute battery: The battery must be changed within a short time.
 Removed: the battery is not connected.

Display 4/4 shows battery consumption.

Consumption counters 4/4
Com -RF: 3 -IR: 6
VIv -op: 4 -cl: 4
Display: 31
Backgr: 0

Com-RF = number of connections via GPRS
Com-IR = number of connections via the opti-

cal interface

VIv-op = number of valve openings
VIv-cl = number of valve closings
Display = number of display activations
Backgr = basic daily consumption

Date and time

See page 4 (Date and time).

LCD pixel test

- A display test can be carried out in this menu.
- 1 Follow the displayed instructions.
- → A test pattern is shown in the display.
- 2 Briefly press the selection key .
- ▷ A further test pattern appears in the display.
- 3 Press the selection key and hold down. The display switches to the previous menu.

Cyclic test

- The accuracy of the meter can be checked using a cyclic test.
- For more details of the cyclic test, see page 10 (Check test).

GPRS modem status

> The communications data are displayed.

StCon = connection status

GSM.N = GSM network operator. The name

of the current provider is displayed in plain text.

in plain text.

IPAdr = IP address is displayed

L.Err = information about the last connection error

Identification & calibration info

See page 3 (Navigating within the menu).

Establishing an optical communications link

- Depending on customer requirements, the optical interface can be locked.
- In order to configure the electronic index for the respective application, the optical communications link must be activated.
- 1 Position the opto-adapter head on the interface provided.

2 You can navigate through the "Peripherals" menu with the user keys ▶, ◀ and the selection key

Peripherals

Opt. interface

Disconnected

> Optical communication is enabled for 2 hours.

- ▷ If the optical communications link is not used during this time, the interface will be deactivated.
- 3 Initiate communication.
- ➤ The procedure depends on the user software.

Setting the index parameters

The index properties can be adjusted using the user equipment. Please contact the manufacturer.

Changing the battery

A WARNING

Risk of explosion in explosion-hazard areas!

- As a general rule, maintenance and repair work should be avoided in explosive atmospheres.
- The battery must not be changed or installed in explosive atmospheres.
- Check that the electrical system complies with the special electrical explosion protection requirements.
- When working on electrical equipment in an explosion-hazard area, only design-approved electrical operating equipment may be used.
- Use original spare parts supplied by Elster GmbH, see page 14 (Spare parts).
- There is a risk of explosion if a wrong battery is used.
- The battery is available as a spare part.
- The battery can only be changed when no data transmission is running, see symbol for the radio module in the display. Otherwise, data communication will be aborted.

△ WARNING

Data loss!

Ensure that no data are being transmitted.

- 4 Start the battery change procedure.
- ➤ The procedure depends on the user software.

- **7** Reprogram the battery parameters.
- ➤ The procedure depends on the user software.

- 8 Refit the battery cover.
- **9** Push in a new screw locking cap. The body carrying out this task should apply its own seal.

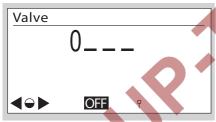
Changing the SIM card

A WARNING

Data loss!

- Ensure that no data are being transmitted.
- The SIM card can only be changed when no data transmission is running, see symbol for the radio module in the display. Otherwise, data communication will be aborted.
- Follow steps 1 to 5 of "Changing the battery", see section above.
- The SIM card slot is located at the bottom righthand corner.
- Press the SIM card briefly to release it from its holder.

- 4 Insert the new SIM card in the same position and press it briefly to lock the card.
- To refit the battery, follow steps 6 to 9 of "Changing the battery", see section above.
- The new SIM card requires a new PIN number.
- 10 Enter the new PIN number via the optical interface. Check the other communications parameters. The procedure depends on the user software.


Releasing the valve

If a valve is integrated in the diaphragm gas meter BK, this must be released/opened for commissioning.

! CAUTION

To avoid damage:

- Ensure the customer's consumers are closed.
- The valve can only be released when the optical communications link has been established or via the wireless interface.
- Unless otherwise agreed, the valve is open on delivery as standard.
- 1 Establish the optical communications link, see page 8 (Establishing an optical communications link).
- The procedure for releasing the valve depends on your user software and may differ from the description.
- ➤ The index can be configured so that a password is required to release the valve.

The valve release display will then be shown.

- ▶ Press the selection key and hold down.
- After a short time, the unit switches to initialization mode.

 After successful initialization, the gas flow check is started. The test duration is shown in the display.

Valve

Max time: 00:30:00 Min time: 00:30:00

ON

F

Max time: maximum test duration. Min time: minimum test duration.

- The test duration may vary depending on the dimensions of the gas lines downstream of the measuring equipment.
- Once the release criteria have been checked, the results are shown in the display.

Check test

MID 2014/32/EU prescribes that it must be possible to check the meter.

- The requirements and test methods must comply with national laws and regulations.
- The following tests describe the check tests which are carried out by accredited testing agencies.
- Always conduct a pressure and temperature correction in accordance with established procedures (unit under test against master meter).
- Measurement accuracy class, see page 15 (Technical data).
- The unit under test must be acclimatized and installed on the test ria.
- Maintain the climatic conditions constant during the entire test duration. Otherwise, the test results will be inaccurate.
- Immediately before the beginning of the test, the quantity of test air, which corresponds to at least 50 x the cyclic volume of the meter to be tested, is fed through the meter at a flow rate of Q_{max.} (maximum flow rate of a gas meter).
- During an active cyclic test, the display disappears after 5 minutes but lights up every minute for 10 seconds. This function is available for max. 5 hours.

To conduct the tests, the thermowell and the pressure test point (if available) can be used as a reference for the temperature and pressure measured by the index.

Legend

F_N = error of the master meter in %

F_P = error of the unit under test in %

p_a = assumed mean gas pressure, see page 15 (Technical data)

p_b = base pressure in mbar, see page 15 (Technical data)

p_N = absolute pressure on the master meter in mbar

p_P = absolute pressure on the unit under test in

Q_{max.} = maximum flow rate of a gas meter

Q_{min.} = minimum flow rate of a gas meter

 Q_N = flow on master meter in m³/h based on the displayed volume V_N

 $Q_{act,N}$ = actual flow rate on the master meter in m³/h

Q_P = flow determined on unit under test based on V_P in m³/h

 Δt_N = total master meter testing time in s

 Δt_P = testing time of the unit under test in s

t_b = base temperature in °C, see page 15 (Technical data)

 T_b = base temperature in K, T_b = (273.15 + $\{t_b\}$) K

 $_{b15}$ = base temperature in K for t_{b} = 15°C, T_{b15} = (273.15 + 15) K = 288.15 K

t_g = relevant temperature on the unit under test in °C

 T_g = relevant temperature on the unit under test in K, $T_q = (273.15 + \{t_q\}) \text{ K}$

T_N = absolute temperature on the master meter

T_P = absolute temperature on the unit under test

V_b = converted volume with reference to t_b

 V_{b15} = converted volume with reference to t_b = 15° C

V_N = displayed volume on master meter in m³

V_{act},N = actual volume on master meter in m³

 $V_{\rm P}$ = volume on unit under test in m³

Value after C or U in display, depending on device configuration and test method. See test procedure below for further details.

➤ The curly brackets mean "numerical value of".

Cyclic test

- The cyclic test is designed for checking the meter with a master meter.
- The recorded volume of the unit under test during the testing period can be read off directly from the index once the test has been completed and can be compared with the master meter. Testing at a constant flow rate thus ensures the lowest possible level of measurement uncertainty for the unit under test.

* Cyclic test: start

C:00.000000 m³ U:00.000000 m³

tg: 25.04°C pg: 1023.25 mbar

N:00000-0 t:00000.00 s

Press to abort test

C = converted volume

U = non-converted volume

t_a = measured gas temperature

p_q = measured gas pressure

p_a = assumed mean gas pressure

N = number of complete measuring cycles (measuring unit revolutions) - number of intermediate sampling points in the measuring cycle (max. 8)

= total testing time in seconds

The display may vary depending on the meter type. If necessary, measure the values on the unit under test.

The following relationships apply to the displayed volumes:

	BK-GE	C = U (no conversion)
		$C = V_{b15}$, conversion to $t_b = 15^{\circ}C$
	BK-GET	U = V _{b15} , the conversion takes
		place in the measuring unit
		$C = V_b$, conversion to t_b
	BK-GETB	$U = V_{b15}$, the conversion takes
DN-GEID	place in the measuring unit	
		$V_b = V_{b15} \times T_b / T_{b15} \times p_a / p_b$
		$C = V_b$, conversion to t_b
	BK-GETe	U = V _P , non-converted volume
		$V_b = V_P \times T_b/T_a$
BK-GETeB		C = V _b , conversion to t _b
		U = V _P , non-converted volume
	$V_b = V_P \times T_b/T_g \times p_a/p_b$ C = V_b , conversion to t_b and p_b	
BK-GB	BK-G B	$C = V_b$, conversion to t_b and p_b
	U = V _P , non-converted volume	

- ➤ The following error calculations are based on PTB Testing Instructions, Volume 29 "Messgeräte für Gas – Gaszähler" (Measuring instruments for gas – gas meters), Edition 2003.
- ➤ The values required in formula F_P, see page 12 (Cyclic test at a constant flow rate) and page 13 (Cyclic test with a given volume), for V_P, T_P and p_P are determined as follows:

For testing the converted volume:

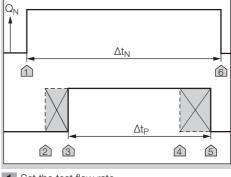
 V_P = value after C in the display T_P =

	T _P = (273.15 + {t}) K, where t =	p _P =
BK-GE	Absolute tem- perature on the unit under test	Absolute pressure on the unit under test
BK-GET	15°C	Absolute pressure on the unit under test
BK-GETB	15°C	p _P , see Technical data
BK-GETe	t _b , see Technical	Absolute pressure on the unit under test
BK-GETeB	data	p _P , see Technical data
BK-GB		p _P , see Technical data

For testing the non-converted volume: V_P = value after U in the display

	T _P =	
	$(273.15 + \{t\}) K$	p _P =
	where t =	
	Absolute tem-	Absolute
BK-GE	perature on the	pressure on the
	unit under test	unit under test
		Absolute
BK-GET	15°C	pressure on the
		unit under test
		Absolute
BK-GETB	15°C	pressure on the
		unit under test
		Absolute
BK-GETe	t _g , see display	pressure on the
		unit under test
		Absolute
BK-GETeB	t _g , see display	pressure on the
	-	unit under test
BK-GB	t _g , see display	p _g , see display

Cyclic test at a constant flow rate


- The test rig is in pre-trial operation, i.e. start of measurement on the unit under test will be delayed.
- Maintain the flow rate constant.

Test load and minimum test volumes for the test with index readout:

	Q _{max} .	Cyclic	Test volume in dm ³ at		
Type	in	volume in		0.2 Q _{max}	
	m ³ /h	dm ³	Q _{min.}	0.2 Qmax.	Q _{max} .
BK-G1.6	2.5	1.2	1.2	12	60
BK-G2.5	4.0	1.2	1.2	12	60
BK-G4	6.0	1.2	1.2	12	60
BK-G2.5	4.0	2	2	20	100
BK-G4	6.0	2	2	20	100
BK-G6	10	2	2	20	100
BK-G6	10	4	4	40	200
BK-G6	10	6	6	60	300
BK-G10	16	6	6	60	300
BK-G16	25	6	6	60	300
BK-G25	40	12	12	120	600
BK-G40	65	18	18	180	900
BK-G65	100	24	24	240	1200
BK-G100	160	48	48	480	2400

- The minimum test volumes are recommended guide values. The measurement uncertainty of the complete system (test rig plus unit under test) must not exceed 1/3 of the maximum permissible error (MPE). The testing time must be at least 10 s.
- In the test procedure described below, it is guaranteed that the unit under test always performs full measuring unit rotations.

Master meter test procedure

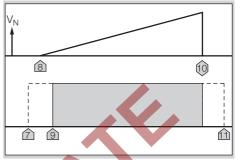
- 1 Set the test flow rate.
- 2 Start measuring the reference time Δt_N at marker 1.
- Immediately afterwards, briefly press the selection key on the index to start the cyclic test on the unit under test marker 2. The index will thus be "armed" for measurement.
- As soon as one of the significant sensor positions has been detected, the unit changes to measuring mode − marker 3.
- Once the required minimum testing time has been reached, the measurement can be terminated – marker 4.

- Briefly press the selection key

 in order to end the measurement.
- Measurement on the unit under test stops automatically once the full number of measuring unit revolutions has been completed marker 5.
- Measurement is terminated automatically after 5 hours.
- 5 Stop the test on the master meter marker 6. ➤ The measurements are then available.
- 6 Read off the flow rate on the master meter or calculate if necessary:
 - a) taking into account the inherent error of the master meter:

 $Q_{act,N} = V_N \times 3600 \text{ s/h} / ((1 + F_N/100) \times \Delta t_N)$ b) If the inherent error of the master meter has already been taken into account in the displayed volume ($V_N = V_{act,N}$):

 $Q_{act,N} = V_{act,N} \times 3600 \text{ s/h} / \Delta t_N$


- 7 Calculate the flow rate on the unit under test: $Q_P = V_P/\Delta t_P$.
- The accuracy is checked by comparing the flow rates. The pressure and temperature values of the unit under test corrected with reference to the master meter have already been taken into account here:
 - $F_P = 100\% \times (((Q_P \times p_P \times T_N) / (Q_{act,N} \times p_N \times T_P)) 1)$
- On a nozzle test rig with a known flow rate, steps 2 and 6 can be omitted.
- ➤ The error calculation is based on PTB Testing Instructions, Volume 29 "Messgeräte für Gas – Gaszähler" (Measuring instruments for gas – gas meters), Edition 2003.

Cyclic test with a given volume

Test load and minimum test volumes for the test with index readout:

	Q _{max} .	Cyclic	Test volume in dm ³ at		
Type	in m³/h	volume in dm ³	Q _{min.}	0.2 Q _{max.}	Q _{max.}
BK-G1.6	2.5	1.2	36	72	72
BK-G2.5	4.0	1.2	36	72	72
BK-G4	6.0	1.2	36	72	72
BK-G2.5	4.0	2	60	120	120
BK-G4	6.0	2	60	120	120
BK-G6	10	2	60	120	120
BK-G6	10	4	120	240	120
BK-G6	10	6	180	360	360
BK-G10	16	6	180	360	360
BK-G16	25	6	180	360	360
BK-G25	40	12	360	720	720
BK-G40	65	18	540	1080	1080
BK-G65	100	24	720	1440	1440
BK-G100	160	48	1440	2880	288

Master meter test procedure

- 1 To activate the cyclic test on the unit under test, briefly press the selection key on the index marker 7. The index will thus be "armed" for measurement.
- 2 Start the test on the master meter marker 8.
- As soon as one of the significant sensor positions has been detected, the unit changes to measuring mode – marker 9.
- 3 Test is ended marker 10.
- A Read off the test results on the unit under test.
- ➤ The measured values are updated with each 1/8 revolution of the measuring unit.
- 5 Compare the measurement results with the master meter and determine the measuring deviation on the unit under test:
 - a) taking into account the inherent error of the master meter:

$$F_P = 100\% \times (((V_P \times (1 + F_N/100) \times p_P \times T_N) / (V_N \times p_N \times T_P)) - 1)$$

b) If the inherent error of the master meter has already been taken into account in the displayed volume ($V_N = V_{act,N}$), the following applies:

 $F_P = 100\% \times (((V_P \times p_P \times T_N) / (V_{act,N} \times p_N \times T_P)) - 1)$

- 6 Stop execution of the cyclic test marker 11.

 Briefly press the selection key twice in order to stop the measurement.
- Measurement is terminated automatically after 5 hours.

RTC test

- ➤ The climatic conditions must be maintained constant at 22 ± 5°C during the entire test duration. Temperature changes in 24 hours ≤ 2 K.
- Ensure that conditions remain sufficiently stable during the measurement.
- The accuracy of the time count can be verified with this test.
- 1 Acclimatize the unit under test and place next to the time reference unit.
- If necessary, activate the time display on both units.
- 3 Ensure synchronous reading by taking a photo.
- Observe a min. testing time of 72 hours.
 - 5 Repeat steps 2 and 3.
 - 6 Accuracy of the clock, see page 15 (Technical data).

Temperature test

- A temperature test is required on diaphragm gas meters with temperature conversion BK..Te only.
- The accuracy of the temperature measurement can be verified with this test.
- The temperature test can only be carried out in Service mode.

! CAUTION

To avoid damage to the unit:

- Comply with ambient temperature, see page 15 (Technical data). Deviations from the permitted ambient temperature will be recorded in the error memory.
- ➤ Temperature measurement accuracy, see page 15 (Technical data).
- Install the diaphragm gas meter in a climatic chamber.
- 2 Activate Service mode see page 6 (Service mode).
- 3 Change to the "Cyclic test" menu.
- 4 Close the climatic chamber.
- 5 Select an ambient temperature as a reference value and bring the climatic chamber to this temperature.
- ➤ To ensure there is also a uniform temperature in the meter, we recommend starting the meter air/gas flow during the temperature adjustment phase.
- Ensure that temperature distribution remains uniform and stable during the temperature measurement.
- 6 Compare the measured value to the temperature reference value.
- If required, several reference values can be checked. In this case, repeat the test as of point 5.

Assistance in the event of malfunction

- ? Fault
- ! Cause
- Remedy

Possible faults and suggested solutions

- When pressing the user keys, the display remains switched off.
- ! The index is defective.
- Contact the manufacturer.
- ? The symbol is displayed.
- ! Low battery. This symbol is only displayed when battery power is low.
- Replace the battery.
- In the case of faults which are not described here, contact the manufacturer immediately.

Maintenance

- The housing can be cleaned using a damp cloth. To prevent static electricity charge, never use a dry cloth.
- For maintenance, refer to the operating instructions for diaphragm gas meters BK-G1.6 to BK-G25 → http://docuthek.kromschroeder.com/doclib/main.php?language=1&folderid=400041&by_class=2&by_lang=-1.

Accessories

External antenna

Elster Part No.:

72910351, "Retrofit kit external antenna El6/2.5m"

Spare parts

Only the following spare parts are approved:

Battery

Order No.: 72910350, "Spare parts kit battery pack El6".

Screw locking cap

Order No.: 32447510.

Technical data

Application with diaphragm gas meters BK..ETe RoHS compliant

Enclosure: IP 65.

Max. allowable operating pressure $p_{\text{max.}}$ (positive pressure), see index plate.

Battery service life: approx. 15 years. Ambient temperature of index: -25 to +55°C (for the meter as a whole, see index plate). Base temperature $t_{\rm b}$: see index plate. Accuracy of the clock: 9 s/day at 20°C on the day of manufacture.

Temperature measurement accuracy on the day of manufacture:

- \pm 0.2°C in the range from -10 to +55°C.
- \pm 0.25°C in the range from -25 to -10°C.

Communication: 169 MHz M-Bus, GPRS.

Data logger for historic meter readings: up to 190 days in hourly intervals.

Optical interface: pursuant to EN 62056-21, Mode (E), Annex B.2.

The battery is certified as part of the electronic index. Only use original spare parts supplied by Elster. Suitable battery, see page 14 (Spare parts).

For more technical data on the diaphragm gas meter BK, see:

Operating instructions for diaphragm gas meters BK-G1.6 to BK-G25 → www.docuthek.com

Logistics

Transport

Diaphragm gas meters are always to be transported in the upright position. On receipt of the product, check that the delivery is complete, see page 2 (Part designations). Report any transport damage immediately.

Storage

Diaphragm gas meters are always to be stored in the upright position and in a dry place. Ambient temperature: see page 15 (Technical data).

Disposal

Meters with electronic components:

Components, particularly batteries, are to be disposed of separately.

On request, old units may be returned carriage paid to the manufacturer, see page 16 (Contact), in accordance with the relevant waste legislation requirements.

Honeywell

Germany

Elster GmbH Strotheweg 1 49504 Lotte

Tel. +49 541 1214-0 Fax +49 541 1214-370

info-instromet-GE4N@honeywell.com

www.elster-instromet.com

United Kingdom

Elster Metering Limited Paton Drive Tollgate Business Park Beaconside Stafford, ST16 3EF Tel. +44 1785 275200 Fax +44 1785 275300 solution.elster@honeywell.com www.elster-instromet.com

Ireland

GB-16

Active Energy Control Ltd. Unit 4, Clare Marts Quin Road Ennis, Co. Clare +353 65 6840600 Fax +353 65 6840610 info@aec.ie www.aec.ie

We reserve the right to make technical modifications