For detailed instructions see Controller Product Manual 51-52-25-139.

Step 1. Record Instrument Model \& Serial
Note: Check inside label on chassis (remove from case)

Model number: \qquad

Serial number: \qquad

ETC32: Superior Process Controller with Current Output and 2 alarms, or current output 1 and relay output 2 with one alarm; auxiliary output and 1 digital input or no aux-out and 2 digital inputs; 10baseT Ethernet/ModbusRTU communications; set-point programming; math functions; IR configuration port; second universal input.

Step 2. Dimensions and mounting

Note: For NEMA 4 water protection, install the 4 screws and washers into the indentations at the corners of the front bezel.

Step 3. Wiring

Fig. 3-1: General Connection Diagram

Fig. 3-2: ETC32 for 4-20mA current driven actuators

Fig. 3-3: ETC32 for 0-10VDC output.

$R i$ is a resistor to be added to the input terminals of the device. $R z$ is the input impedance of the device. It must be greater than 500 ohms.
a) Set OUTALG - CORANGE to $0-20 \mathrm{~mA}$ to get 0 V at 0%
b) Measure or look up the input impedance of the driven device
c) Calculate Ri resistor value from the formula: $\mathrm{Ri}=(500 \times \mathrm{Rz}) /(\mathrm{Rz}-500)$
d) Choose a 1% resistor equal to or the next greater standard value for the calculated resistance and power rating of at least $1 / 4 \mathrm{~W}$.

Fig. 3-4: ETC32 example of wiring to VeriFlame and a 4-20mA actuator
This circuit provides:

- a burner start position that is increased above the minimum firing rate,
- an alarm 1 setpoint to force the actuator to the minimum firing rate, and
- an alarm 2 setpoint to shut off the burner.

1. In this example Alarm 1 is set for high deviation, $\mathrm{A} 1 \mathrm{~S} 1 \mathrm{TYPE}=\mathrm{DE}, \mathrm{A} 1 \mathrm{~S} 1 \mathrm{HL}=\mathrm{HIGH}$. When the temperature exceeds the setpoint by the value entered for A1S1VAL, then the contact closes across the current output causing the actuator to move to the low fire position. It will be held at low fire until the difference between the temperature and setpoint drops below the A1S1VAL setting.
2. In this example Alarm 2 is also set for high deviation, A2S1TY $=D E, A 2 S 1 H L=H I G H$, except the value entered for A2S1VAL is set greater than for alarm 1. If the application temperature keeps rising with the actuator at low fire, then the alarm 2 contact will open. This causes the CR2 contact to remove power from the interlock input of the flame safeguard and shut down the burner. When the difference between the temperature and setpoint falls within the A2S1VAL setting, then power is restored to the flame safeguard interlock input and the burner is lit.
3. Digital input 1 is used to force the output to a specific value for a burner starting position. It is useful for burners that require a higher firing rate to light reliably but can be turned down lower after lit. In the OPTION group, DIGINP1 is set to manual failsafe MANFS. The value for the starting position is entered in the CONTROL group under FAILSAFE as a percentage of output.

Fig 3-5 Alarm Relay Contact States

Alarm Relay Wiring	Variable NOT in Alarm State		Variable in Alarm State	
	Relay Contact	Indicators	Relay Contact	Indicators
N.O. $-5-6$ or 8-9	Closed	Off	Open	On
N.C. $-4-5$ or 7-8	Open		Closed	

Step 4. Configuring the Controller

Refer to the procedure in Table 4-2 and enter the value or selection for each prompt on Table 4-1 so you will have a record of your controller settings. Some prompts may not appear due to the settings of other prompts.
Table 4-1: Configuration Record Sheet

Group Prompt	Function Prompt	Value or Selection	Factory Setting	Group Prompt	Function Prompt	Value or Selection	Factory Setting
TUNING	PROP BD or GAIN GAINVALn RATE MIN RSET MIN or RSET RPM MAN RSET PROPBD2 or GAIN 2 RATE2MIN RSET2MIN or RSET2RPM CYC SEC or CYC SX3 CYC2 SEC or CYC2 SX3 SECURITY LOCKOUT AUTO MAN RUN HOLD SP SEL	Read Only	$\begin{aligned} & 1.000 \text { (GAIN) } \\ & ---.00 \\ & 1.00(\mathrm{MIN}) \\ & 0.0 \\ & 1.000(\mathrm{GAIN}) \\ & 0.00 \\ & 1.00(\mathrm{miN}) \\ & 20 \\ & 10 \\ & 0 \\ & \text { CALIB } \\ & \text { ENABLE } \\ & \text { ENABLE } \\ & \text { ENABLE } \end{aligned}$	INPUT2	IN2 TYPE XMITTER2 IN2 HIGH IN2 LOW RATIO2 BIAS IN2 FILTR2 BURNOUT2 EMMISIV2		$0-10 \mathrm{mV}$ LINEAR 1000 0 1.00 0 0 NONE 0.00
				CONTROL	PV SOURC PID SETS SW VALUE LSP'S RSP SRC AUTOBIAS SP TRACK PWR MODE PWR OUT SP HiLIM SP LoLIM ACTION OUT RATE PCT/M UP PCT/M DN OUTHiLIM OUTLoLIM I Hi LIM I Lo LIM DROPOFF DEADBAND OUT HYST FAILMODE FAILSAFE MAN OUT AUTO OUT PBorGN MINRPM		INPUT 1 1 ONLY 0.00 1 ONLY NONE DISABLE NONE
SPRAMP	SP RAMP TIME MIN FINAL SP SP RATE EU/HR UP EU/HR DN HOTSTART SP PROG		DISABLE 3 1000 DIS 0 0 DISABLE DISABLE				NONE MANUAL LAST 1000 0 REVERSE DISABLE 0 0
ACCU TUNE	FUZZY ACCUTUNE DUPLEX AT ERR	\qquad Read Only	DISABLE DISABLE MANUAL ---				$\begin{aligned} & 100 \\ & 0.0 \\ & 100.0 \\ & 0.0 \end{aligned}$
ALGO RTHM	CONT ALG TIMER PERIOD START LOW DISP INP ALG1 MATH K CALC HI CALC LO ALG1 INA ALG1 INB ALG1 INC ALG1BIAS PCT CO		PID A DISABLE 0.01 KEY TI REM NONE 1.0 -- INPUT 1 INPUT 2 NONE 0.000 0.200				1.0 0.5 NOLATCH 0.0 0.0 O.0 GAIN MIN
				OPTIONS	AUX OUT CO RANGE LOW VAL HIGH VAL DIG INP1		$\begin{aligned} & \text { DISABLE } \\ & 4-20 \mathrm{~mA} \\ & 0.0 \\ & 100.0 \\ & \text { NONE } \end{aligned}$
OUT ALG	OUTALG RLYSTATE RLY TYPE MOTOR TI CUR OUT co RANGE LOW VAL HIGH VAL		```CUR* 1OF 2ON MECHAN 30 DISABLE 4-20mA 0.0 100.0```		DIG1COMB DIG INP2 DIG2COMB	\qquad	DISABLE NONE DISABLE
				COM	Com ADDR Com STATE IR ENABLE BAUD TX DELAY		3 DISABLE ENABLE 19200 1
INPUT1	IN1 TYPE XMITTER1 IN1 HIGH IN1 LOW RATIO 1 BIAS IN1 FILTER 1 BURNOUT EMMISIV1		0-10mV LINEAR 1000 0 1.00 0 0 NONE 0.00		SHEDENAB SHEDTIME SHEDMOD SHEDSP UNITS CSP RATO CSP BIAS LOOPBACK		DISABLE 30.0 LAST TO LSP ENG 1.0 0 DISABLE

Group Prompt	Function Prompt	Value or Selection	Factory Setting	Group Prompt	Function Prompt	Value or Selection	Factory Setting
ALARMS	A1S1TYPE A1S1 VAL A1S1 HL A1S1 EV A1S2TYPE A1S2 VAL A1S2 HL		NONE 90 HIGH -- NONE 10 LOW	DISPLY	DECIMAL TEMPUNIT FREQ RATIO 2 LANGUAGE		NONE NONE 60 HZ DISABLE ENGLISH
	A1S2 EV A2S1TYPE A2S1VAL A2S1 HL A2S1 EV A2S2TYPE A2S2 VAL A2S2 H L A2S2 EV AL HYST ALMOUT1 BLOCK DIAGNOST		NONE 95 HIGH -- NONE 5 LOW -- 0.1 NoLATCH DISABLE DISABLE	Ethernet Accessible via the PIE tool	MAC Addr IP Addr Subnet Mask Default Gate To Email SMPT Addr Alarm Email Subj		$\begin{aligned} & 10.0 .0 .2 \\ & 225.225 .225 .0 \\ & 0.0 .0 .0 \\ & --.0 .0 \\ & \text { O.0.0.0 } \\ & \text { NONE } \end{aligned}$

Table 4-2. General Configuration Procedure

Step	Operation	Press	Result
1	Enter Set Up Mode	Setup	$\begin{aligned} & \text { Upper Display }=\text { SET } \\ & \text { Lower Display }=\text { TUNING (This is the first Set Up Group title) } \end{aligned}$
2	Select any Set Up Group	Setup	Sequentially displays each Set Up Group Prompt, as listed below in the Configuration Record Sheet. You can also use the or keys to scan the Set Up groups in both directions. Stop at the group title that describes the group of parameters you want to configure. Then proceed to the next step.
3	Select a Function Parameter		Upper Display = the current value or selection for the first function prompt of the selected Set Up group. Lower Display = the first Function prompt within that Set Up group. Sequentially displays the other function prompts of the Set Up group you have selected. Stop at the function prompt that you want to change and then proceed to the next step.
4	Change the Value or Selection	or ${ }^{\text {a }}$	Increments or decrements the value or selection that appears for the selected function prompt. If you change the value or selection of a parameter while in Set Up mode then decide not to enter it, press the [Man/Auto] key once to recall the original value or selection. The recall does not work for a Field Calibration procedure.
5	Enter the Value or Selection		Enters value or selection made into memory after another key is pressed.
6	Exit Configuration	$\begin{aligned} & \text { Lower } \\ & \text { Display } \end{aligned}$	Exits configuration mode and returns controller to the same state it was in immediately preceding entry into the Set Up mode. It stores any changes you have made. If you do not press any keys for 30 seconds, the controller times out and reverts to the mode and display used prior to entry into Set Up mode.

Step 6. Operation

Table 6-1: Start Up Procedure

Step	Operation	Press	Result
1	Select Manual Mode		Until "M" indicator is ON. The controller is in manual mode.
2	Adjust the Output	A or	To adjust the output value and test proper operation of the final control element. Upper Display = Pv Value Lower Display = OT and the output value in \%
3	Enter the Local Setpoint		Upper Display = Pv Value Lower Display = SP and the Local Setpoint Value
		A or	To adjust the local setpoint to the value at which you want the process variable maintained. The local setpoint cannot be changed if the Setpoint Ramp function is running.
4	Select Automatic Mode		Until " A " indicator is ON . The controller is in Automatic mode. The controller will automatically adjust the output to maintain the process variable at setpoint.
5	Tune the Controller	Setup	Make sure the controller has been configured properly and all the values and selections have been recorded on the Configuration Record Sheet. Refer to Tuning Set Up group to ensure that the selections for PB or GAIN, RATE T, and I MIN, or I RPM have been entered. Use Accutune to tune the controller; see product manual for detailed procedure or refer to Tuning Set Up group to manually adjust PB or GAIN, RATE T, and I MIN or I RPM.

Table 6-2: Procedure for Changing the Local Setpoints

Step	Operation	Press	Result
1	Select the Setpoint	Lower Display	Until you see: Upper Display $=$ PV Lower Display $=$ SP or 2SP or 3SP (Value)
2	Change the Value	or	To change the Local Setpoint to the value at which you want the process maintained. The display "blinks" if you attempt to enter setpoint values beyond the high and low limits.
3	Return to PV Display	Lower Display	To store immediately or will store after 30 seconds.

Table 6-3: Procedure for Switching Between Setpoints
You can switch Local and Remote setpoints or between two Local setpoints when configured. NOTE: The REMOTE SETPOINT value cannot be changed at the keyboard.

Step	Operation	Press	Result
1	Select the Setpoint		To switch between the Three Local Setpoints and/or the Remote Setpoint. NOTE: "KEY ERROR" will appear in the lower display, if: - the remote setpoint or additional local setpoints are not configured as a setpoint source - you attempt to change the setpoint while a setpoint ramp is enabled, or - if you attempt to change the setpoint with the setpoint select function key disabled.

Table 6-4: Viewing the Operating Parameters

Press the LOWER DISPLAY key to scroll through the operating parameters listed.
The lower display will show only those parameters and their values that apply for a specific model.

Lower Display Key Parameter Prompts

Lower Display	Description
OUT XX.X	OUTPUT-Output value is shown in percent with one decimal point for all output types except Three Position Step Control (TPSC). For TPSC, when no slidewire is connected, this display is an estimated motor position and is shown with no decimal point. For Position Proportional Control, if the slidewire fails, then the instrument automatically switches over to TPSC and the OUT display changes with it.
SP XXXX	LOCAL SETPOINT \#1-Also current setpoint when using SP Ramp.
2SP XXXX	LOCAL SETPOINT \#2
3SP XXXX	LOCAL SETPOINT \#3
RSP XXXX	REMOTE SETPOINT
1IN XXXX	INPUT 1-Used only with combinational input algorithms.
2IN XXXX	INPUT 2
POS XX	SLIDEWIRE POSITION-Used only with TPSC applications that use a slidewire input.
CSP XXXX	COMPUTER SETPOINT-When SP is in override.
DEV XXXX	DEVIATION-Maximum negative display is -999.9.
PIDSET X	TUNING PARAMETER - where X is either 1 or 2.
ET HR.MN	ELAPSED TIME-Time that has elapsed on the Timer in Hours.Minutes.
OTR HR.MN	TIME REMAINING-Time remaining on the Timer in Hours.Minutes. The " O " is a rotating clock face.
RAMPXXXM	SETPOINT RAMP TIME-Time remaining in the Setpoint Ramp in minutes.
SPN XXXX	SETPOINT NOW-Current Setpoint when SP Rate is enabled. The SP XXXX display shows the "target" or final setpoint value.
XXRAHR.MN	RAMP SEGMENT NUMBER AND TIME REMAINING-Set Point Programming display. XX is the current segment number and HR.MN is the time remaining for this segment in Hours.Minutes.
XXSKHR.MN	SOAK SEGMENT NUMBER AND TIME REMAINING- Set Point Programming display. XX is the current segment number and HR.MN is the time remaining for this segment in Hours.Minutes.
RECYC XX	NUMBER OF SP PROGRAM RECYCLES REMAINING
To BEGIN	RESET SP PROGRAM TO START OF FIRST SEGMENT
RERUN	RESET SP PROGRAM TO START OF CURRENT SEGMENT
AUX XXXX	AUXILIARY OUTPUT—Displayed only when output algorithm is not Current Duplex.
BIA XXXX	BIAS-Displays the manual reset value for algorithm PD+MR.
TUNE OFF	LIMIT CYCLE TUNING NOT RUNNING-Appears when Accutune is enabled but not operating.
DO FAST	Limit Cycle Tuning with the objective of producing quarter-damped tuning parameters. This tuning may result in PV overshoot of the SP setting.
DO SLOW	Limit Cycle Tuning with the objective of producing damped or Dahlin tuning parameters, depending upon the detected process deadtime. The tuning parameters calculated by this selection are aimed at reducing PV overshoot of the SP setting.

