FVA-FVS ADJUSTABLE FLOW VALVES

NATURAL GAS

NOTES:

1. Capacities based on gas @ 0.60 s.g. and $68^{\circ} \mathrm{F}$ temperature.
2. Static pressure drop measured across full open valve with pointer at position 10 and valve piston in full open position.
3. Maximum inlet pressure is 15 psig up to 4 " valve size and 3 psig for 6" valve size.
4. Maximum temperature is $200^{\circ} \mathbf{F}$.

CORRECTION FACTORS

PRESSURE (Correction Factor C_{1})

Pressure	Inlet Pressure (psig)		
Drop (psig)	5	10	15
1	1.15	1.29	1.42
2	1.63	1.80	1.95
3	1.95	2.25	2.45
4	2.20	2.50	2.85
5	2.45	2.75	3.00
10		3.70	4.05
15			4.70

TEMPERATURE (Correction Factor C_{2})

Temperature $\left({ }^{\circ} \mathrm{F}\right)$	68	100	150	200
Multiplier	1.00	1.03	1.07	1.12

EXAMPLE:
Determine the corrected volumetric flow rate in standard cubic feet per hour for a FVS2A15 ($11 / 2^{\prime \prime}$) adjustable flow valve for propane gas at $100^{\circ} \mathrm{F}$ having an inlet pressure of 15 psig and a pressure drop of 5 psig .

Using the equation: ${ }^{Q}$ (corrected) $=\mathrm{C}_{1} \times \mathrm{C}_{2} \times \mathrm{C}_{3} \times{ }^{\mathrm{Q}}$ (rated)

1. From the standard flow curve for Natural Gas (Q135) at 27.7 "w.c. pressure drop, determine the rated flow: ${ }^{\circ}($ rated $)=16,000$ scfh.
2. From the Pressure correction factor table, determine the pressure correction factor: $\mathrm{C}_{1}=3.00$
3. From the Temperature correction factor table, determine the temperature correction factor: $\mathrm{C}_{2}=1.03$
4. From the Specific Gravity correction factor table, determine the specific gravity correction factor for Propane: $\mathrm{C}_{3}=0.628$
Then, ${ }^{Q}($ corrected $)=(3.00) \times(1.03) \times(0.628) \times(16,000)$
$=31,050$ scfh of propane gas
(OVER)
In accordance with Hauck's commitment to Total Quality Improvement, Hauck reserves the right to change the specifications of products without prior notice.
HAUCK MANUFACTURING CO., P.O. Box 90 Lebanon, PA 17042-0090 717-272-3051

StRAIGHT VALVE

NOTES:

1. Capacities based on air @ 1.0 s.g. and $68^{\circ} \mathrm{F}$ temperature.
2. Static pressure drop measured across full open valve with pointer at position 10 and valve piston in full open position.
3. Maximum inlet pressure is $\mathbf{1 5}$ psig up to $4^{\prime \prime}$ valve size and 3 psig for 6" valve size.
4. Maximum temperature is $200^{\circ} \mathrm{F}$.

CORRECTION FACTORS

PRESSURE (Correction Factor C_{1})

Pressure	Inlet Pressure (psig)		
Drop (psig)	5	10	15
1	1.15	1.29	1.42
2	1.63	1.80	1.95
3	1.95	2.25	2.45
4	2.20	2.50	2.85
5	2.45	2.75	3.00
10		3.70	4.05
15			4.70

ANGLE VALVE

TEMPERATURE (Correction Factor C_{2})

Temperature $\left({ }^{\circ} \mathrm{F}\right)$	68	100	150	200
Multiplier	1.00	1.03	1.07	1.12

EXAMPLE:

Determine the corrected volumetric flow rate in standard cubic feet per hour for a FVS2A15 ($11 / 2^{\prime \prime}$) adjustable flow valve for air at $150^{\circ} \mathrm{F}$ having an inlet pressure of 15 psig and a pressure drop of 5 psig.

Using the equation: ${ }^{\mathrm{Q}}$ (corrected) $=\mathrm{C}_{1} \times \mathrm{C}_{2} \times{ }^{\mathrm{Q}}$ (rated)

1. From the standard flow curve for Air (Q138) at 16 osig pressure drop, determine the rated flow: ${ }^{\circ}($ rated $)=12,000 \mathrm{scfh}$.
2. From the Pressure correction factor table, determine the pressure correction factor: $\mathrm{C}_{1}=3.00$
3. From the Temperature correction factor table, determine the temperature correction factor: $\mathrm{C}_{2}=1.07$
Then, ${ }^{Q}($ corrected $)=(3.00) \times(1.07) \times(12,000)$

$$
=38,520 \mathrm{scfh} \text { of air }
$$

SELECTION TABLE

VALVE SIZE	PORT SIZE	STRAIGHT MODEL NO.	ANGLE MODEL NO.
$1^{\prime \prime}$	A	FVS2A10D	FVA2A10B
$1 \frac{1 / 4^{\prime \prime}}{}$	A	FVS2A12D	FVA2A12B
$11 / 2^{\prime \prime}$	A	FVS2A15D	FVA2A15B
$2^{\prime \prime}$	A	FVS2A20D	FVA2A20B
$2^{1 / 2^{\prime \prime}}$	A	FVS2A25F	FVA2A25A
$3^{\prime \prime}$	X	FVS2X30F	FVA2X30A
$3^{\prime \prime}$	A	FVS2A30F	FVA2A30B
$3^{\prime \prime}$	B	FVS2B30F	FVA2B30B
$3^{\prime \prime}$	C	FVS2C30F	FVA2C30B
$4^{\prime \prime}$	A	FVS2A40F	FVA2A40B
$4^{\prime \prime}$	B	FVS2B40F	FVA2B40B
$4^{\prime \prime}$	C	FVS2C40F	FVA2C40B
$6^{\prime \prime}$	A	FVS2A60F	-
$6^{\prime \prime}$	B	FVS2B60F	-

DIMENSIONS

FVA-FVS ADJUSTABLE FLOW VALVES

STRAIGHT VALVES (6")
 GY226

SUPPLEMENTAL DATA

FVA-FVS ADJUSTABLE FLOW VALVES

CONTROL

When adjusting screws are LEVEL the flow curve without any back pressure on the valve is a straight line, as shown. When valves are installed in a combustion system, as the burner flow rate increases the back pressure in the downstream side of the valve increases
causing the flow through the valve to "fall off" from a straight line curve, as shown.

By turning the adjusting screws in, flow can be increased separately at each of ten valve positions to produce a straight line flow curve for the combustion system.

