

Flow Computer Geräteserie enCore ZM1, BM1, MC1, DC1, FC1

Handbuch AFB Modbus

NFC-AFBMO-DE h 2020-11-15

Veröffentlicht mit AFB 03-16-B

Haftungsausschluss

Dieses Dokument enthält urheberrechtlich geschützte Informationen von Honeywell.

Die hierin enthaltenen Informationen dürfen nur für den angegebenen Zweck verwendet werden, und kein Teil dieses Dokuments oder seines Inhalts darf ohne ausdrückliche Genehmigung der Elster GmbH vervielfältigt, veröffentlicht oder an Dritte weitergegeben werden.

Obwohl diese Informationen nach bestem Wissen und Gewissen zur Verfügung gestellt werden, lehnt die Elster GmbH die stillschweigende Gewährleistung der Marktgängigkeit und Eignung für einen bestimmten Zweck ab und gibt keine ausdrücklichen Garantien ab, es sei denn, dies wird in ihrer schriftlichen Vereinbarung mit und für ihren Kunden festgelegt.

In keinem Fall haftet die Elster GmbH gegenüber Dritten für direkte, spezielle oder Folgeschäden. Die Informationen und Angaben in diesem Dokument können ohne vorherige Ankündigung geändert werden.

Copyright © 2020 Elster GmbH, Steinern Straße 19 - 21, 55252 Mainz-Kastel, Germany. Alle Rechte vorbehalten.

Inhalt

1	Über diese Anleitung		
2	Funktiona	ale Beschreibung	7
	2.1 Modb	bus-Protokollvarianten im Überblick	
	2.1.1	Modbus RTU/Modbus ASCII (seriell)	10
	2.1.2	Modbus TCP	
	2.2 Beisp	ielszenarien	11
	2.2.1	Datenübertragung via Modbus RTU/Modbu	us ASCII11
	2.2.2	Datenübertragung via Modbus TCP	
3	AFB-Besc	onderheit: Register- und Archivbereiche	13
	3.1 Regis übers	ster-/Archivbereiche und Register – Gegen- stellung	15
	3.2 Regis	ter- oder Archivbereiche definieren	17
	3.3 Benu terbe	tzerdefinierte Register bereitstellen (Regis- reich)	
	3.4 Archiv	ve über Modbus auslesen (Archivbereich)	
	3.5 Expoi	rtregister am Gerät prüfen	
4	Anzeige u	Ind Bedienung	
	4.1 Anzei	gen in der Übersicht	
	4.2 Anzei	gen im Detail	
	4.2.1	Hauptanzeige	
	4.2.2	Anzeige Modbusfilter	
	4.2.3	Anzeige Diagnostik	
	4.2.4	Anzeige Modbusregister	
5	Technisch	ne Daten	
	5.1 Nome	enklatur	

	5.2 Unterstützte Modbus-Telegrammtypen	39
	5.3 Datenbeschreibung der Registerformate	40
	5.3.1 Byte-, Word- und DWord-Reihenfolge	.40
	5.3.2 Unterstützte Datentypen	.41
6	FAQ	. 43
	6.1 Normal- vs. Expertenmodus beim Modbus AFB	43
	6.2 In wenigen Schritten FC1 als Modbus-Slave an COM2 parametrieren (Normalmodus)	44
	6.3 Systemzeit über Modbus synchronisieren (Normalmodus	s)47
	6.4 Protokollfehler beheben (Meldung)	49
7	Hinweise	52
	7.1 Allgemeine Hinweise	. 52
	7.2 enCore-Handbücher auf einen Blick	54
	7.2.1 Aktuelle Handbücher von Docuthek herunterlader	n 57
8	Index	59

1 Über diese Anleitung

Das enCore FC-Handbuch ist modular aufgebaut. Einen Überblick über das enCore/enSuite-Konzept und den Aufbau des Handbuchs, Sicherheitsinformationen sowie die Textkennzeichnung erhalten Sie in der ↔ "Betriebsanleitung" des enCore FC. (↔ 7.2 enCore-Handbücher auf einen Blick, S. 54)

Der vorliegende Band beschreibt die grundlegende Funktionalität und Bedienung des AFB Modbus

	Der AFB Modbus in der FC-Geräteserie
	Beachten Sie, dass nicht jeder AFB für jeden Gerätetyp der Geräteserie enCore Flow Computer (kurz: enCore FC) zur Verfügung steht. Welche Funktionen ein Gerät im Ein- zelnen unterstützt, ist im Detail in der Online-Hilfe be- schrieben.
	Selbst wenn der AFB von Ihrem Gerätetyp unterstützt wird, ist er nicht immer im Auslieferungszustand enthalten. Ist dies bei Ihrem Gerät der Fall, dann fügen Sie den AFB zu- nächst in enSuite mit der Aktion Software-Konfiguration hinzu und übertragen die zusätzliche Software in das Gerät.
	Zudem sind einige AFBs kostenpflichtig. Bei Fragen wenden Sie sich direkt an Honeywell.

Die Bedeutung der einzelnen Parameter ist ausführlich in der Online-Hilfe von enSuite dokumentiert, deshalb wird auf die Parametrierung in diesem Dokument nur beispielhaft eingegangen.

Aufruf der Online-Hilfe

In enSuite rufen Sie die allgemeine Hilfe über den Menüeintrag **Hilfe – () Online-Hilfe anzeigen**. Die kontextsensitive Hilfe öffnen Sie direkt bei der Parametrierung aus dem gewünschten Zweig mit [F1] Dieser Band der Dokumentation wendet sich an Fachpersonal, das nach erfolgter Montage des Geräts und Installation der aktuellen enSuite-Version auf dem PC für Servicetätigkeiten folgender Aufgaben verantwortlich ist:

- Anpassung der Geräteparametrierung an die Messaufgabe
- Test aller Datenpunkte und Inbetriebnahme
- weitere Servicemaßnahmen

Die Abbildungen in dieser Anleitung dienen der Darstellung der erläuterten Sachverhalte, daher können sie je nach Konfiguration Ihres Geräts und enSuite abweichen.

2 Funktionale Beschreibung

Dieses Handbuch beschreibt die Funktion und Arbeitsweise des Modbus AFB bei enCore-Geräten. Der AFB basiert auf dem Modbus-Protokoll, das den Datenaustausch mit externen Geräten ermöglicht. Damit kann der AFB vorteilhaft verwendet werden, um applikationsspezifisch den Datenaustausch mit rückwirkungsfreien Zusatzeinrichtungen wie Stationsleittechnik und Fernwirkgeräten zu ermöglichen.

Der Modbus AFB verwaltet benutzerdefinierte Register, die Sie bei der Parametrierung flexibel mit enCore-internen Werten verknüpfen können. Dabei können Sie Modbus-Adressen, Datenformate, Bytereihenfolge usw. frei parametrieren. Des Weiteren können Sie Archive über Modbus auslesen. Die Kommunikation erfolgt über ein TCP/IP-Netzwerk oder eine serielle Verbindung (Punkt-zu-Punkt oder Bus).

Das Modbus-Protokoll ist ein Kommunikationsprotokoll, mit dem eine Master/Slave- bzw. eine Client/Server- Kommunikation zwischen Geräten realisiert werden kann, die in einem Netzwerk verbunden sind. Es handelt sich um ein offenes Protokoll, das 1979 von Gould-Modicon zunächst für die serielle Kommunikation zwischen speicherprogrammierbaren Steuerungen entwickelt wurde. Seit 2007 ist die Version Modbus TCP Teil der Norm IEC 61158.¹

enCore-Geräte unterstützen die drei Varianten des Modbus-Protokolls:

- Modbus ASCII
- Modbus RTU (engl. **R**emote **T**erminal **U**nit)
- Modbus TCP

Generell gilt, pro AFB Modbus können Sie...

... bei serieller Kommunikation jeweils

- MODBUS Application Protocol Specification V1.1b3 (Apr. 2012)
- MODBUS Over Serial Line Specification and Implementation Guide V1.02 (Dez. 2006)
- MODBUS Messaging on TCP/IP Implementation Guide V1.0b
 (Okt. 2006)

¹ Die Implementierung des Modbus-Protokolls basiert auf den jeweiligen Modbus Spezifikationen (⇔ modbus.org/specs.php).

- 1 Modbus-Slave (≙ 1 Gerät) mit 1 Slave-ID abbilden.
- 1 Modbus-Master (≙ 1 Gerät) abbilden, der bis zu 10 Slaves über ihre Slave-ID adressieren kann.

... über TCP/IP jeweils

- 1 Modbus-Server (
 [≜] 1 Gerät) mit IP-Adresse und Port abbilden, auf den bis zu 10 Clients gleichzeitig zugreifen können.
- 1 Modbus-Client (≙ 1 Gerät) abbilden, der mehrere Server über ihre IP-Adresse und Port adressieren kann.

Exkurs: Anbindung von intelligenten Messgeräten über Modbus-Scripte

Das Modbus-Protokoll wird ebenfalls häufig verwendet, um Messgeräte wie Ultraschallzähler und Prozessgas-Chromatographen ("intelligente Messgeräte") an enCore-Geräte anzuschließen. Hier geben die Hersteller für einzelne Gerätetypen die spezifischen Details für die Modbus- Kommunikation und deren Auswertung wie z. B. Registerbelegung fest vor. Elster setzt diese Herstellervorgaben und typischen Registerbelegungen in Scripten um. Die Scripte für die gebräuchlichsten intelligenten Messgeräte sind bereits im Auslieferungszustand von enCore-Geräten enthalten.

Für die Anbindung eines PGCs oder USMs wählen Sie bei der Parametrierung für die entsprechende serielle oder LAN-Schnittstelle das erforderliche Script aus, eine weitere Modbus-Parametrierung entfällt. Nur in Ausnahmefällen wird für intelligente Messgeräte ein Modbus AFB benötigt, und zwar nur dann, wenn ein Script nicht alle benötigten Register bereitstellt.

Die Anbindung von intelligenten Messgeräten wie Gasbeschaffenheitsmessgeräten oder Ultraschall-Gaszählern über gerätespezifische Modbus-Scripte ist nicht Bestandteil dieses Handbuchs.

enCore FC Handbuch "Grundsytem mit SFBs"

2.1 Modbus-Protokollvarianten im Überblick

Das Modbus- Protokoll basiert auf der Master/Slave- bzw. Client/Server-Architektur. Es ist ein sog. Single-Master-Protokoll, d.h. der Master bzw. Client steuert die gesamte Übertragung und überwacht z. B. evtl. auftretende Timeouts. Angeschlossene Geräte dürfen nur nach Anforderung durch den Master bzw. Client Telegramme versenden. Als fehlerhaft erkannte Telegramme werden grundsätzlich verworfen und nach einer Wartezeit neu angefordert.

Bei allen Protokollvarianten gehören zu den Modbus-Daten der Funktionscode, Startadresse oder Anzahl der Register. Die Daten liegen in einem oder mehreren Registern mit je 16-Bit-Länge; die Belegung der Register mit Anwendungsdaten parametrieren Sie bei Inbetriebnahme.

Die allgemeinen Einstellungen der seriellen bzw. der LAN-Schnittstelle des enCore-Geräts werden im Normalmodus unter **Start (E/A-Konfiguration)** und im Expertenmodus im **Grundsystem – E/A** für die gewünschte Karte parametriert. Die Kommunikationseinstellungen für Master bzw. Client und Slave oder Server parametrieren Sie im AFB Modbus.

Auf die Parametrierung der Kommunikationseinstellungen wird im Handbuch nicht im Detail eingegangen, da Sie ausführlich in der Online-Hilfe dokumentiert ist.

Slave bzw. Server im Normalmodus parametrieren

Beachten Sie, dass Sie im Normalmodus bei serieller Kommunikation nur einen (lokalen) Slave und bei TCP/IP nur einen (lokalen) Modbus-Server parametrieren können. Um einen Modbus- Master bzw. Modbus- Client zu parametrieren wechseln Sie in den Expertenmodus.

 \Leftrightarrow 6.1 Normal- vs. Expertenmodus beim Modbus AFB (S. 43)

2.1.1 Modbus RTU/Modbus ASCII (seriell)

Die Varianten Modbus RTU und Modbus ASCII unterschieden sich nur unwesentlich im Framing. Während Modbus ASCII bei der Übertragung den ASCII-Zeichensatz verwendet, ist die Übertragung bei Modbus RTU binär. Beide verwenden eine serielle asynchrone Punkt-zu-Punkt Datenverbindung über RS232C oder eine Mehrpunktverbindung über RS422 oder RS485.

Jeder Slave benötigt eine eindeutige ID (**Slave-ID**), durch die der Master ihn am Bus identifizieren kann – die ID Null (0) ist reserviert.

Die seriellen Kommunikationseinstellungen für Modbus RTU und Modbus ASCII müssen auf Sender- und Empfängerseite gleich definiert sein. Dazu gehören Treiber-Modus, Baudrate, Anzahl der Datenbits (8 bei Modbus RTU, 7 bei Modbus ASCII), Parität und Stoppbits.

2.1.2 Modbus TCP

Modbus TCP benutzt eine LAN-Schnittstelle der CPU oder einer ESER4 und verwendet das Übertragungsprotokoll TCP/IP. Die Modbus-Daten werden als TCP/IP-Paket übertragen. Standardmäßig ist der Port 502 für den Modbus TCP-Server reserviert.

Jeder Datenaustausch eines Telegramms erfolgt Punkt- zu- Punkt, wobei einer der beiden Teilnehmer an der Modbus-Kommunikation ein Client und der andere ein Server ist. Da die IP-Verbindung nach jeder Übertragung wieder abgebaut wird, kann danach eine Übertragung mit einem anderen Teilnehmer am Netzwerk stattfinden.

Landesspezifische Vorschriften berücksichtigen!

Beachten Sie, dass die Modbus-Kommunikation unverschlüsselt ist. Dadurch ist das Abhören oder Modifizieren durch einen Angreifer nicht auszuschließen. Berücksichtigen Sie die landesspezifischen Vorschriften. Diese können u.a. die manuelle Verifikation der Daten erfordern. Die Adressierung der Modbus-Geräte erfolgt über die IP-Adresse eines Gerät, eine weitere ID wie die Slave-ID bei Modbus RTU/Modbus ASCII wird eigentlich nicht benötigt, ist aber optional parametrierbar.

2.2 Beispielszenarien

2.2.1 Datenübertragung via Modbus RTU/Modbus ASCII

Folgendes Beispiel zeigt die Adressierung an einem seriellen Bus über Modbus RTU oder Modbus ASCII. Voraussetzung für den Datenaustausch ist, dass jeder Slave eine eindeutige Slave-ID besitzt, die jeweils im Master hinterlegt ist:

Abb. 2-1: Datenübertragung via Modbus RTU/Modbus ASCII – Beispiel

2.2.2 Datenübertragung via Modbus TCP

Folgendes Beispiel zeigt die Adressierung in einem TCP-Netzwerk über Modbus TCP. Ein Client adressiert einen Server über dessen (eindeutige) IP-Adresse und Portnummer. Voraussetzung für den Datenaustausch ist, dass diese Angaben sowohl beim Server als auch Client hinterlegt sind:

Abb. 2-2: Datenübertragung via Modbus TCP – Beispiel

3 AFB-Besonderheit: Register- und Archivbereiche

Die Modbus-Spezifikation definiert den Datenframe für die Datenübertragung, beschreibt jedoch keine Datenformate. Deshalb kommen in der Praxis viele verschiedene Formate zum Einsatz.

Um bei der Datenbeschreibung flexibel zu sein und gleichzeitig die Parametrierung so einfach wie möglich zu halten, führt der AFB Modbus neben den einzelnen Registern zusätzlich Registerund Archivbereiche ein. Jedes Register ist dabei genau einem Bereich zugeordnet. Das hat den Vorteil, dass alle Register eines Bereichs die allgemeineren Eigenschaften dieses Bereichs (z.B. die Datenformate) erben.

Die Parametrierung im AFB Modbus erfolgt immer zweistufig:

(1) Register- oder Archivbereich definieren.

Zunächst legen Sie einen Bereich an und definieren Eigenschaften, die für alle Register dieses Bereiches gültig sind.

(2) Register parametrieren.

Anschließend definieren Sie für diesen Bereich die einzelnen Register und legen die speziellen Eigenschaften der einzelnen Register fest.

Register-Startadresse gemäß Modbus-Spezifikation mit einem Offset von Minus eins "-1"

Modbus verwendet die Startdresse eines Registers, um es auszulesen oder zu schreiben. Beachten Sie, dass Registernummern immer bei 1 beginnen, die Startadresse bei Modbus aber um 1 kleiner ist als die Registernummer. Das bedeutet, dass im Modbustelegramm als Startadresse die "Registernummer – 1". Damit verhält sich der AFB Modbus gemäß Modbus-Standard.

Zum Beispiel:

Die momentane Systemzeit hat die Registernummer 4200 und entsprechend als Modbus-Startadresse 4199 gesendet.

Dieses Kapitel ist in folgende Abschnitte unterteilt:

- ⇒ 3.1 Register-/Archivbereiche und Register Gegenüberstellung (S. 15)
- S.2 Register- oder Archivbereiche definieren (S. 17)
- ⇒ 3.3 Benutzerdefinierte Register bereitstellen (Registerbereich) (S. 24)
- 3.4 Archive über Modbus auslesen (Archivbereich) (S. 26)

3.1 Register-/Archivbereiche und Register – Gegenüberstellung

In diesem Abschnitt werden die Unterschiede zwischen Register- und Archivbereichen und Registern herausgestellt.

2 Arten von Bereichen

- Registerbereich
 - generell für benutzerdefinierte Register

2 Arten von Registern

 Importregister
 Ein Wert wird über Modbus in das Register importiert und zur Weiterverarbeitung im

Register-/Archivbereiche

- sowohl für lokales Gerät (Slave/Server) als auch entfernte Geräte (Master/Client)
- unterstützt
 Importregister
 und
 Exportregister

Archivbereich

- speziell f
 ür das Auslesen von Archivgruppen des AFB Benutzerarchive
- nur f
 ür lokales Ger
 ät (Slave/Server)

Jeder Bereich

 – … kann eine variable Anzahl an Registern verwalten – einzige Einschränkung: Anzahl von 2.000 Registern darf nicht überschritten werden.

Pro Bereich

- ... definieren Sie jeweils eine allgemeine Datenbeschreibung, die alle Register dieses Bereichs erben.
- … legen Sie allgemeine Datenbeschreibung mit folgenden Eigenschaften fest:
 - Registerlänge: 16-Bit, 32-Bit, 64-Bit
 - Byte-/Word-/DWord-Lage: HI/LO (Big-Endian), LO/HI (Little-Endian)
 - Datenformate für: Messwerte, Zähler und Event-

Register

enCore-Gerät abgebildet.

Exportregister
 Das enCore-Gerät bildet
 einen Wert im Exportregister
 ab und stellt ihn über Modbus
 zur Verfügung.

Jedes Register

 … ist immer einem Register- oder einem Archivbereich zugeordnet und erbt die allgemeinen Eigenschaften seines Bereichs und Datentyps.

Pro Register

- … definieren Sie die speziellen Eigenschaften des Registers
 Name und Registernummer.
- … legen Sie die datentypspezifischen Eigenschaften fest, die für Import- und Exportregister variieren können
- Am Beispiel eines Import Messwerts:
 - Physikalische Größe
 - Skalierungsfaktor und Skalierungsoffset
 - Untere Begrenzung und
 Obere Begrenzung

Register-/Archivbereiche	Register
zähler, Bitleisten und Status sowie Zeit und Datum	
 Pro Registerbereich können Sie für Messwerte das Verhalten festlegen, Wenn Bereichsgrenze verletzt ist. 	
 Pro Archivbereich können Sie genau 1 Archiv- gruppe des AFB Benut- zerarchive abbilden. legen Sie fest, ob die Archiv- gruppe adress- oder regis- terbasiert auf Modbus-Register abgebildet wird. 	

Tabelle 3-1: Register- und Archivbereiche vs. einzelne Register – eine Gegenüberstellung

3.2 Register- oder Archivbereiche definieren

Für jeden Registerbereich und Archivbereich legen Sie im ersten Schritt die allgemeinen Eigenschaften und Datenformate fest, die für alle Register dieses Bereichs gültig sind.

Archivbereiche haben zusätzlich noch weitere archivspezifische Eigenschaften. (⇔ 3.4 Archive über Modbus auslesen (Archivbereich), S. 26)

Vorgehen in enSuite

Voraussetzungen

- Nur für Archivbereiche Die gewünschten Archivgruppen sind im III AFB Benutzerarchive parametriert.

ODER

Um eine neuen Bereich hinzuzufügen, ...

- ... wechseln Sie auf die Registerkarte **Parameter**.
- Im Bereich Registerbereiche fügen Sie mit dem + Pluszeichen einen neuen Bereich hinzu..
- ✓ Im Parametrierfenster wurde ein neuer Ordner ☐ Bereich <x>
 [: Registerbereich] eingefügt.
- Öffnen Sie im Ordner Bereich<x>[: Registerbereich] die Registerkarte Parameter.
- ✓ Hier definieren Sie die allgemeinen Eigenschaften und Datenformate f
 ür diesen Bereich.
- Nur f
 ür lokales Ger
 ät (Slave oder Server)
 Legen Sie mit der Auswahlliste Bereich <x> fest, ob Sie einen Registerbereich oder eine Archivbereich definieren.
- Legen Sie mit der Auswahlliste Registeränge fest, ob die Daten in Form von 16-Bit, 32-Bit oder 64-Bit-Registern übertragen werden. Standardeinstellung ist 16-Bit.

Um für die Dateneinheiten Byte (8-Bit), Word (16-Bit) und DWord (32-Bit) die Position des höher- und niedrigwertigen Bytes festzulegen, ...

- … wählen Sie in den Auswahllisten Byte-Lage, Word-Lage und Dword-Lage:
 - HI/LO (Big-Endian)

...wenn das höchstwertige Byte an der Anfangsadresse liegt.

• LO/HI (Little-Endian) (Standardeinstellung)

...wenn das kleinstwertige Byte auf der Anfangsadresse liegt.

So parametrieren Sie bestimmte Byte-Reihenfolgen eines Register- oder Archivbereichs				
Parametrierung in enSuite:				
Byte-Lage	HI/LO (Big-Endian)			
Word-Lage	HI/LO (Big-Endian)			
Dword-Lage	HI/LO (Big-Endian)			
Byte-Lage	LO/HI (Little-Endian)			
Word-Lage	LO/HI (Little-Endian)			
Dword-Lage	LO/HI (Little-Endian)			
Byte-Lage	LO/HI (Little-Endian)			
Word-Lage	HI/LO (Big-Endian)			
Dword-Lage	HI/LO (Big-Endian)			
Byte-Lage	HI/LO (Big-Endian)			
Word-Lage	LO/HI (Little-Endian)			
Dword-Lager	LO/HI (Little-Endian)			
	ParametrierungByte-Lage Word-LageByte-Lage Word-LageByte-Lage Word-LageByte-Lage 			

Legen Sie in der Auswahlliste **Registerformat (Messwerte)** den Datentyp fest, mit dem Messwerte in Registern abgebildet werden:

• Word

als ganze Zahl mit Wort-Länge 16-Bit und Wertebereich - $2^{15} \dots 2^{15}$ -1

DWord

als ganze Zahl mit Wort-Länge 32-Bit und Wertebereich - $2^{31} \dots 2^{31}$ -1

QWord

als ganze Zahl mit Wort-Länge 64-Bit und Wertebereich - $2^{63} \dots 2^{63}$ -1

- Float S5 als Gleitkommazahl 32 Bit (Siemens Datentyp)
- Float (Standardeinstellung) als normalisierte Gleitkommazahl 32-Bit ("single precision") nach IEEE 754
- Double als normalisierte Gleitkommazahl mit 64 Bit ("double precision") nach IEEE 754
- Legen Sie in der Auswahlliste Registerformat (Zähler/Eventzähler) den Datentyp fest, mit dem Messwerte in Registern abgebildet werden:
 - Word

als ganze Zahl mit Wort-Länge 16-Bit und Wertebereich - $2^{15} \dots 2^{15}$ -1

• **DWord** (Standardeinstellung)

als ganze Zahl mit Wort-Länge 32-Bit und Wertebereiche - $2^{31} \hdots 2^{31}$ -1

QWord

als ganze Zahl mit Wort-Länge 64-Bit und Wertebereich - $2^{63} \dots 2^{63}$ -1

Float S5

als Gleitkommazahl 32 Bit (Siemens Datentyp)

Float

als normalisierte Gleitkommazahl 32-Bit ("single precision") nach IEEE 754

Double

als normalisierte Gleitkommazahl mit 64-Bit ("double precision") nach IEEE 754

• BCD8

als binär codierte Dezimalzahl 8 Stellen, Wortlänge 32 Bit und Wertebereich 0 ... $10^9\,\text{--}1$

• BCD16

als binär codierte Dezimalzahl 16 Stellen, Wortlänge 64 Bit und Wertebereich O ... $10^{17}\,\text{--}1$

▶ (ab AFB-Version 03-12)

Legen Sie in der Auswahlliste **Registerformat für Zähler (Nachkommateil)** den Datentyp fest, mit dem Nachkommateile von Zählwerten (solche Werte sind also immer <1) in Registern abgebildet werden:

Float

als normalisierte Gleitkommazahl 32-Bit ("single precision") nach IEEE 754

• Double

als normalisierte Gleitkommazahl mit 64-Bit ("double precision") nach IEEE 754

- Legen Sie in der Auswahlliste Registerformat (Bitleisten/Status) den Datentyp fest, mit dem Messwerte in Registern abgebildet werden:
 - Word (Standardeinstellung) als ganze Zahl mit Wort-Länge 16-Bit und Wertebereich $-2^{15}\dots2^{15}$ -1
 - DWord

als ganze Zahl mit Wort-Länge 32-Bit und Wertebereich $^{-2^{31}} \dots 2^{31}$ -1

QWord

als ganze Zahl mit Wort-Länge 64-Bit und Wertebereich $^{-2^{63}} \dots 2^{63}\, ^{-1}$

Legen Sie in der Auswahlliste Registerformat (Zeit/Datum) den Datentyp fest, mit dem Messwerte in Registern abgebildet werden: Bedeutung der Abkürzungen für Datum und Uhrzeit

- $ss \triangleq$ Sekunden (0 bis 59)
- MM ≙ Minuten (0 bis 59)
- hh ≙ Stunden (0 bis 23; wobei: 0 = Mitternacht)
- dd ≙ Tag (1 bis 31)
- mm ≙ Monat(1 bis 12)
- $yy \triangleq$ Jahr ausgehend von 20yy (2000 bis 2099)
- xx ≙ (reserviert)
- . ≙ (reserviert)
- $0 \triangleq$ Füllzeichen Null (0)

QWord

als $\mathtt{ssMMhhWDddmmyyxx}$ mit einem Register von 64-Bit-Wortlänge

• Word (mm,dd,yy,hh,MM)

als mm, dd, yy, hh, MM mit fünf Registern von je 16-Bit-Wortlänge

Word (mm,dd,yy,hh,MM,ss)

als mm, dd, yy, hh, MM, ss mit sechs Registern von je 16-Bit-Wortlänge

Word (yy,mm,dd,hh,MM,ss)

als yy, mm, dd, hh, MM, ss mit sechs Registern von je 16-Bit-Wortlänge

• Word (dd,mm,yy,hh,MM,ss)

als dd, mm, yy, hh, MM, ss mit sechs Registern von je 16-Bit-Wortlänge

• Float (mmddyy.0,hhMMss.0)

als mmddyy.0, hhMMss.0 mit zwei Registern von je 32-Bit-Wortlänge

• Float (yy,mm,dd,hh,MM,ss)

als yy, mm, dd, hh, MM, ss mit sechs Registern von je 32-Bit-Wortlänge

• Unix

Anzahl Sekunden seit dem 1.1.1970 00:00:00 mit einem Register von 32-Bit Wortlänge – Bedeutung der Zeit (lokal oder UTC) anwendungsabhängig (Nur f
ür Registerbereiche ab AFB-Version 03-12 – Betriebsart "Master")

Mit dem Parameter **Import-Registertyp** legen Sie fest, mit welchem Kommando der Master Daten aus dem Slave ausliest. Der AFB unterstützt folgende Kommandos:

• Holding-Register (0x03)

Der Master liest die Register des Slaves mit Funktionscode 0x03 aus dem Adressbereich 40001 bis49999.

• Input-Register (0x04)

Der Master liest die Register des Slaves mit Funktionscode 0x04 aus dem Adressbereich 30001 bis 39999.

• (Nur bei Messwerten in einem Registerbereich)

In der Auswahlliste **Wenn Bereichsgrenze verletzt** legen Sie das Verhalten für den Fall fest, dass die parametrierte **Untere Begrenzung** oder **Obere Begrenzung** von einem Messwert verletzt wird – dieser Parameter wird nur dann ausgewertet, wenn eine dieser Bereichsgrenzen parametriert ist.

Sie haben folgende Optionen:

• Wert auf Grenzwert setzen (Standardeinstellung)

Je nachdem, ob die obere oder untere Bereichsgrenze verletzt ist, wird der entsprechende Grenzwert in das Register geschrieben.

• Wert mit Fehler zurückweisen

(*Nur bei Import-Registern*) Der Wert, der die obere oder untere Begrenzung verletzt, wird zurückgewiesen. Stattdessen wird der Fehlercode 0x03 (unzulässiger Wert) über Modbus gesendet.

Registerbelegung

Bei enCore-Geräten legen Sie die Registerbelegung mit den Parametern **Registerlänge** und **Registerformat <Datentyp>** fest. Je nach Datenformat des Registers werden Anwendungsdaten in einem oder mehreren aufeinanderfolgenden Registern mit der parametrierten **Registerlänge** übertragen.

Zum Beispiel erfolgt bei einer **Registerlänge** von 16-Bit die Übertragung von 64-Bit-Daten in 4 aufeinanderfolgenden 16-Bit-Registern.

Das weitere Vorgehen:

- für Registerbereiche
 ⇒ 3.3 Benutzerdefinierte Register bereitstellen (Registerbereich) (S. 24)
- für Archivbereiche
 ⇒ 3.4 Archive über Modbus auslesen (Archivbereich) (S. 26)

3.3 Benutzerdefinierte Register bereitstellen (Registerbereich)

Mit Ausnahme von Archivdaten verwalten Sie benutzerdefinierte Register komfortabel nach Bedarf in ein oder mehreren Registerbereichen. Für jeden Registerbereich definieren Sie in einem zweiten Schritt die erforderlichen Import- und Exportregister.

Vorbelegung der ersten Modbus-Liste bei einer Standardparametrierung

Wenn Sie mit dem Wizard eine Standardanwendung mit (mindestens) einer Modbus-Liste erstellen, dann enthält die erste Liste bereits einen Registerbereich, der mit Exportregistern für typische Werte der Mengenumwertung vorbelegt ist. Hierbei handelt es sich um Vorschläge von Elster. Passen Sie diese Register an Ihre Anforderungen an.

Wenn Sie mithilfe des Wizards zwei Listen erstellt haben, so enthält der zweite AFB Modbus keine vordefinierten Register.

Vorgehen in enSuite

Voraussetzungen

- Der Registerbereich ist bereits definiert.
 \$\prod 3.2 Register- oder Archivbereiche definieren (S. 17)
- für lokales Gerät (Slave oder Server)

In der Parametrierung ist der Ordner des AFB Modbus geöffnet: ☐ <Gerät> – [] <Gruppe> –] B Modbus [<x>] – Kommunikationsmodus: Slave oder Server – ☐ Lokales Gerät ODER

• für entfernte Geräte (Master oder Client)

In der Parametrierung ist der Ordner des AFB Modbus geöffnet: [™] <Gerät> – [[™] <Gruppe> –] [™] Modbus [<x>] – Kommunikationsmodus:: Master oder Client – [™] Entfernte Geräte – [™] Entferntes Gerät <x>.

Um eine Registerliste zu bearbeiten, ...

• ... wechseln Sie auf die Registerkarte **Registerliste**.

Auf dieser Registerkarte verwalten Sie komfortabel Register für die einzelnen Registerbereiche. Hier können Sie neue Import- und Exportregister hinzufügen, vorhandene Register verschieben, ändern oder löschen. Für Exportregister vom Typ Messwert oder Zähler stellt enSuite auf der Registerkarte Intervall eine komfortable Möglichkeit bereit, zyklisch Verbräuche oder Zählerstände per Modbus übertragen.

➡ Welche Registertypen und Registerdetails der AFB unterstützt, ist detailliert in der Online-Hilfe beschrieben.

3.4 Archive über Modbus auslesen (Archivbereich)

Der Archivbereich ist für die Verarbeitung von Archivgruppen des AFB Benutzerarchive optimiert. Einen Archivbereich können Sie mit einem oder mehreren Archivgruppen des AFB Benutzerarchive verknüpfen.

Wahlweise können Sie einen Archivkanal adressbasiert oder gezielt registerbasiert auslesen:

- Bei adressbasiertem Zugriff bildet der AFB Modbus einen Archivkanal (oder dessen jüngsten Teil) 1:1 auf Modbus-Register ab. Dabei können Sie die maximale Archivtiefe parametrieren, mit der Archivkanäle per Modbus übertragen werden. Bei diesem Verfahren berechnet der AFB, wie viele Modbus-Register ein Archiveintrag benötigt.
- Bei registerbasiertem Zugriff ist es (anders als beim adressbasierten Modus) möglich, gezielt einen Archiveintrag des Archivkanals über einen Index auszulesen (vs. einer fest parametrierten Anzahl der jüngsten Archiveinträge). Mit aufeinanderfolgenden Anfragen (jeweils mit geändertem Index) ist es auf diese Weise möglich, schrittweise die gesamte Archivtiefe eines Archivkanals auszulesen, ohne für die gesamte Archivtiefe Modbus-Register bereitzustellen. Hierbei muss jedoch sichergestellt sein, dass der Archivkanal während des gesamten Lesevorgangs nicht aktualisiert wird. Zum Beispiel, indem Sie den Lesevorgang eines Stundenwertarchivs immer nach der vollen Stunde starten.

Vorgehen in enSuite

Um den Archivbereich mit einer Archivgruppe des 🎹 AFB Benutzerarchive zu verknüpfen, ...

 … wählen Sie in der Auswahlliste Zugehörige Archivgruppe die gewünschte Archivgruppe aus.

Der AFB unterstützt 2 unterschiedliche Arten, die ausgewählte Archivgruppe auf Modbus-Register abzubilden:

Wählen Sie in der der Auswahlliste **Zugriffsmodus**, den Eintrag...

• ... Adressbasiert

wenn Sie eine fest parametrierte Anzahl der jüngsten Archiveinträge über Modbus auslesen.

A. adressbasierten Zugriff parametrieren (S. 27)

• ... Registerbasiert

wenn Sie gezielt Archiveinträge des Archivkanals über einen Index auslesen.

➡ B. registerbasierten Zugriff parametrieren (S. 28)

A. adressbasierten Zugriff parametrieren

- Geben Sie die Archivtiefe im Parameter Anzahl Archiveinträge an – Standardeinstellung ist 100.
- Gemäß der gewählten Archivtiefe verwendet der AFB für diesen Archivkanal einen zusammenhängenden Registerbereich mit fortlaufenden Registernummern.

Hierbei berücksichtigt er die Registerlänge und die Datenformate, die Sie für diesen Archivbereich parametriert haben.

- Legen Sie die Reihenfolge im Parameter **Indexverfahren** fest:
 - Push up

Bei Push-up-Verfahren wird der aktuellste Archiveintrag in dem reservierten Archivbereich immer in der niedrigen Registernummer übertragen und der älteste in der höchsten (belegten).

Push down

Beim Push-down-Verfahren wird der aktuellste Archiveintrag in dem reservierten Archivbereich immer in der höchsten Registernummer übertragen und der älteste in der jüngsten (belegten).

- B. registerbasierten Zugriff parametrieren
- Geben Sie im Parameter Index-Registernummer Nummer des Index-Registers an – Standardeinstellung is 1.
- Wählen Sie im Parameter Format Index-Register das Format dieses Registers aus:
 - Word/short mit 16-Bit-Wortlänge
 - **DWord/int** mit 32-Bit-Wortlänge
- Legen Sie die Reihenfolge im Parameter Indexverfahren fest:
 - Push up

Beim Push-up-Verfahren zeigt ein Index von Null (0) auf den ältesten Archiveintrag des Archivkanals, ein Index von 1 auf den nächst jüngeren etc.

Push down

Beim Push-down-Verfahren ist es umgekehrt, hier zeigt ein Index von Null (0) auf den aktuellen Archiveintrag, ein Index von 1 auf den nächst älteren etc.

Ordnungsnummer

Beim diesem Indexverfahren fragen Sie einen Archiveintrag gezielt über seine Ordnungsnummer ab. Da die Ordnungsnummer in einem Archivkanal eineindeutig ist, liefert dieser Lesevorgang auch bei wiederholtem Lesen immer den gleichen Archiveintrag (solange dieser im Archivkanal vorhanden ist).

 Die allgemeinen Eigenschaften und Datentypen des Archivbereichs sind definiert.

Im zweiten Schritt definieren Sie die erforderlichen Exportregister:

Um eine Registerliste zu bearbeiten, ...

- ... wechseln Sie auf die Registerkarte **Registerliste**.
- Auf dieser Registerkarte verwalten Sie komfortabel Register f
 ür die einzelnen Registerbereiche. Hier k
 önnen Sie neue Exportregister hinzuf
 ügen, vorhandene Register verschieben,
 ändern oder l
 öschen.

➡ Welche Registertypen und Registerdetails der AFB unterstützt, ist detailliert in der Online-Hilfe beschrieben.

3.5 Exportregister am Gerät prüfen

Mit dem AFB ist es möglich, dass Sie direkt in der Geräteanzeige einzelne Exportregister überprüfen – ausgenommen hiervon sind Datentypen **Export Datum und Zeit**, **Register-Monoflop** und **Ordnungsnummer** (*bei Archivbereichen*).

Sobald Sie sich als Benutzer mit dem Benutzerrecht **Allgemeine Sys**temeinstellungen ändern¹ am Gerät anmelden, können Sie die Testfunktion aktivieren bzw. deaktivieren.

Vorgehen in enSuite

Voraussetzung

• Sie sind als Benutzer mit dem Benutzerrecht Allgemeine Systemeinstellungen ändern am Gerät angemeldet.

Um den Test eines Exportregisters zu aktivieren, ...

- ... wechseln Sie in die Detailanzeige des gewünschten Exportregisters über Modbus – Hauptanzeige.
- In der Anzeige Modbusregister wird die Zeile Test als Auswahlliste angezeigt.
- Wählen Sie in der Auswahlliste **Test** den Eintrag **an**.
- Der Testmodus ist aktiv und der Wert f
 ür das Datenobjekt ist editierbar. Der Text Datenobjekt wird w
 ährend des Testmodus in roter Schriftfarbe dargestellt.

¹ Die Einstellung für die Berechtigung finden Sie in der Parametrierung unter **<Gerät> – Grundsystem –** Benutzer – Allgemeine Systemeinstellungen ändern.

Allgemein Modbus	Modbusregister	07:11:16
Test	an	-
Bereichsname		
Registername	Vb	
Registernummer	01000	
Registerinhalt		
Datenobjekt	0,000	m³
Zuletzt aktual.		
⇒	80	企

Abb. 3-1: Testfunktion für ausgewähltes Exportregister aktiv

Geben Sie in das Feld Datenobjekt den gewünschten Wert ein, den Sie simulieren möchten und bestätigen Sie Ihre Eingabe mit der Schaltfläche J.

Die Wertebereiche variieren je nach Registertyp und zugeordnetem Format.

Der angegebene Wert wird über Modbus bereitgestellt, bis Sie einen neuen Wert eintragen oder die Testfunktion beenden.

Testfunktion beenden

Die Testfunktion endet in folgenden Fällen:

- Sobald Sie in der Anzeige auf eine andere Seite navigieren, z.B. um den Wert eines anderen Registers zu simulieren.
- Abmeldung des Benutzers z.B. aufgrund des Inaktivitätstimeouts.
- Nach einem Neustart des enCore-Geräts.

4 Anzeige und Bedienung

In den Anzeigen AFB Modbus werden alle Register- und Archivbereiche mit den entsprechenden Modbusregistern angezeigt. Seit AFB-Version 03–16–A können Sie die Ergebnisse bequem in der Hauptanzeige filtern.

Anzeige und Navigation bei enCore FC-Geräten

Der generelle Aufbau der Anzeigen bei enCore FC-Geräten und die grundlegenden Navigationsmöglichkeiten sind detailliert in der , Betriebsanleitung" des enCore FC im Kapitel zu Anzeige und Navigation dokumentiert.

Generell werden bei der Bedienung von enCore FC-Geräten Hyperlinks und Aktionen unterschieden. Während Sie mit Hyperlinks durch die Anzeigen des Geräts navigieren, führen Sie mit Aktionen eine bestimmte Funktionalität aus. Hyperlinks und Aktionen werden im Gerät und im Handbuch <u>blau</u> unterstrichen dargestellt

Eine Liste der im Folgenden verwendeten Symbole und Bezeichnungen $\Rightarrow 5.1$ Nomenklatur (S. 39)

4.1 Anzeigen in der Übersicht

Die folgende Abbildung skizziert die hierarchische Anordnung und die Navigation durch die Anzeigen des AFB Modbus:

Abb. 4-1: Anzeigen – hierarchische Struktur

4.2 Anzeigen im Detail

Die **Hauptanzeige** des AFB Modbus gibt einen Überblick über alle (parametrierten) Modbusbereiche des enCore-Gerätes und listet alle zugehörigen Register für den ausgewählten Bereich (in aufsteigender Reihenfolge) auf. Von hier können Sie zur Diagnoseanzeige wechseln. Optional können Sie Filter auswählen, um die Ergebnisliste zu spezifizieren, und zu der detaillierten Anzeige eines Registers wechseln.

4.2.1 "Hauptanzeige" Hyperlink <Keine Filter Auswahl über (parametrierter ausgewählt> zur Angabe Sprung zu Reg.# Bereichsnamen eines Modbus-Filter Modbus Hauptanzeige 15:24:32 Lokales Gerät -Keine Filter ausgewählt TC: 5041 0 Reg.#: 00001 123.449997 bar 00002 6789.100098 bar 333.000000 bar 00011 444.000000 bar 00012 00021 11.000000 bar 22.000000 bar 00022 仚 Bereich listet ausgewähle Register (scrollbar) mit Telegram Counter der Information auf: Auswahl: 1. Hyperlink < Reg.#> zu Details eines Modbusregister Hyperlink zu Diagnostik 2. <Datenobjekt>: übertragener Wert (formatiert) 3. Die Zeichen -, \setminus , \mid und / werden verwendet, um eine Art Drehkreuz zu simulieren, das sich bei jeder erfolgreichen Übertragung eines Im- und Exportregisters um einen Schritt ändert.

Abb. 4-2: Modbus Hauptanzeige – Beispiel

- Die Auswahlliste enthält für Modbus-Master und Client alle parametrierten Entfernte Geräte - für Slave oder Server steht nur der Eintrag Lokales Gerät zur Verfügung
- 2 Der Text Keine Filter ausgewählt wird angezeigt, wenn kein Filter aus der Anzeige Modbusfilter aktiv ist; andernfalls werden alle ausgewählten Filter angezeigt.
- Wenn die Registernummer nicht existiert oder bei der aktuellen Filtereinstellung keine Register gefunden werden, springt der AFB zur nächstliegenden anzeigbaren Registernummer.

4.2.2 Anzeige "Modbusfilter"

Abb. 4-3: Anzeige Modbusfilter – Beispiel

4.2.3 Anzeige "Diagnostik"

Diese Anzeige liefert diagnostische Informationen über den ausgewählten Bereich (nicht von der Funktion "Diagnostics" 0x08):

Abb. 4-4: Anzeige **Diagnostik** – Beispiel

Fehlerzähler werden nur angezeigt, wenn sie nicht Null (0) sind, maximaler Wert ist 999.999.999. Folgende Fehlerzähler werden unterstützt:

Alle Modbus-Typen:

Zugriffsfehler

Zugriff (lesend/schreibend) auf geschützte Register, während das Passwort noch gesperrt ist.

• I-Breichsfehler

Bei Importdaten mit Bereichsüberprüfung liegt der beabsichtigte zu schreibende Wert des Telegramms außerhalb des eingestellten Bereichs.

Längenfehler

Beim Schreiben in FC-Register unterscheidet sich die Größe der vom Telegramm empfangenen Daten von der Gesamtgröße der zu schreibenden FC-Modbus-Register.

Client und Master:

Fehlerantworten

empfangene Telegramme mit Fehlerantwort

• Prüfsummenfehler (nur Master)

empfangene Telegramme mit falscher Prüfsumme

Empfangstimeout

Antwortzeit abgelaufen

Headerfehler

Telegramm(e) mit unerwarteter Funktion oder (*nur Master*) unerwartetem Kommando

• ID-Fehler (nur Master) empfangene Telegramme mit falscher ID

• Register nicht gefunden

ACK-Telegram empfangen, aber entweder ist die Gesamtzahl der geschriebenen Register oder das erste Register nicht korrekt.

Sendefehler

senden eines Telegrams fehlgeschlagen

Server und Slave:

Zugriffsfehler

Schreibanforderung für Exportregister

- Prüfsummenfehler (*nur Slave*) empfangene Telegramme mit falscher Prüfsumme
- Headerfehler (*nur Server*) Gesamtzahl der im Header angegebenen Bytes ist falsch.

• Falsche Funktion

Anforderungstelegramm mit nicht unterstützter Funktion

- Register nicht gefunden
 angeforderte Register nicht vorhanden
- Sendefehler (nur Server)

Interne Daten können aufgrund von Programmfehlern nicht geschrieben werden.

Für gleichzeitigen Schreibbereich:

• Zugriffsfehler

Register nicht im vorgesehenen Bereich

• Längenfehler

Die Datengröße zum Schreiben des Wertes eines einzelnen Registers beträgt nicht 16 Bit.

• Register nicht gefunden

Falsche Registernummer, oder Anzahl der zu schreibenden Register weicht von der Gesamtzahl der Register in dem Bereich ab.

4.2.4 Anzeige "Modbusregister"

Testmodus umschalten: Wenn Testmodus = an , o Voraussetzung: authent	: an/aus Jann können Sie ein Datenobject (2) eingeben. ifizierter Benutzer ist angemeldet
Modbus	Modbusregister 14:36:27
Test	aus
Bereichsname Registername Registernummer Registerinhalt Datenobjekt Zuletzt aktual.	aus an 00001 01000000 1 06.03.20 14:36:24
Bereich mit detaillierten Exportregister. Wobei: • Registerinhalt entl • Registerobjekt ent	Informationen zu ausgewähltem Im- oder nält den übertragenen Wert (hexadezimal) hält den übertragenen Wert (formatiert mit Einheit)

Abb. 4-5: Anzeige Modbusregister – Beispiel

Der Testmodus ist für alle Exportregister verfügbar, mit Ausnahme der Datentypen Export Datum und Uhrzeit, Monoflop- Register und Ordnungsnummer (bei Archivbereichen).

Das Benutzerrecht **Allgemeine Systemeinstellungen ändern** ist erforderlich.

➡ enCore FC-Handbuch "Grundsystem mit SFBs"

5 Technische Daten

5.1 Nomenklatur

Folgende Symbole und Bezeichnungen werden im enCore FC-Gerät und in enSuite für Messdaten und berechnete Werte im Kontext des AFB Modbus verwendet:

Symbol	Kurzform	Beschreibung
abc	<text></text>	parametrierter Register- oder Bereichs- name
#	<ziffer></ziffer>	Platzhalter für eine Ziffer, z.B. für eine Registernummer oder einen Messwert
2°c	<einheit></einheit>	beliebige Einheit z.B. eines Messwerts
	-	

Tabelle 5-1: Nomenklatur

5.2 Unterstützte Modbus-Telegrammtypen

Das Modbus- Protokoll kennt insgesamt 18 verschiedene Telegrammtypen, von denen enCore-Geräte die Folgenden unterstützen – alle anderen Telegrammtypen werden entweder abgewiesen oder nicht ausgewertet.

Тур	Beschreibung
0x03	("Read Holding-Registers") Lesen eines oder mehrerer zusammenhängender Register eines entfernten Geräts.
0x10	("Write Multiple Registers") Ändern eines oder mehrerer zusammenhängender Register in einem entfernten Gerät.
0x08	("Diagnostics") – nur seriell

Тур	Beschreibung		
	Liefert Diagnosewerte zur Kommunikation zwischen einem Master und einem Slave.		
zusätzlich f	zusätzlich für Slave oder Server:		
0x04	("Read Input-Registers") Lesen eines oder mehrerer zusammenhängender Register eines entfernten Geräts.		
0x06	("Write Single Register") Ändern eines Registers in einem entfernten Gerät.		
	Tabelle 5-2: Unterstützte Telegrammtypen		

5.3 Datenbeschreibung der Registerformate

Die Modbus-Spezifikation definiert den allgemeinen Datenframe für die Datenübertragung, jedoch nicht, wie die Daten in den Modbus-Registern abgebildet werden. Deshalb kommen in der Praxis viele verschiedene Datenformate zum Einsatz. Der AFB Modbus beschreibt verschiedene Formate mithilfe der Registerlänge, Byte-Reihenfolge und dem Datentyp.

5.3.1 Byte-, Word- und DWord-Reihenfolge

Die Byte-Reihenfolge gibt die Position des höher- und niedrigwertigen Bytes an. Die Byte-Reihenfolge legen Sie im AFB für jeden Registerbereich für die Dateneinheiten Byte (8-Bit), Word (16-Bit) sowie DWord (32-Bit) an.

Byte- Reihenfolge	Beschreibung
LO/HI	Low-Byte/High-Byte ("Little-Endian") (Standardeinstellung) Das höherwertige Byte liegt auf der höheren Adresse.
HI/LO	High-Byte/Low-Byte ("Big-Endian") Das höherwertige Byte liegt auf der niedrigeren Adresse.

5.3.2 Unterstützte Datentypen

Für Messwerte, Zähler/Eventzähler, Bitleisten/Status:

Name	Datentyp	Größe
Word (short)	Dual- und Hexadezimalzahlen	16-Bit
DWord/int	Dual- und Hexadezimalzahlen	32-Bit
QWord (64- Bit)	Dual- und Hexadezimalzahlen	64-Bit
Float S5	Gleitkommazahl (Siemens Datentyp)	32-Bit
Float	normalisierte Gleitkommazahl single precision nach IEEE 754	32-Bit
Double	normalisierte Gleitkommazahl double precision nach IEEE 754	64-Bit
BCD8	binär codierte Dezimalzahl	8-Bit
BCD16	binär codierte Dezimalzahl	16-Bit

Für Datum und Uhrzeit:

Bedeutung der Abkürzungen für Datum und Uhrzeit

- $ss \triangleq$ Sekunden (0 bis 59)
- $MM \triangleq$ Minuten (0 bis 59)
- hh ≙ Stunden (0 bis 23; wobei: 0 = Mitternacht)
- dd ≙ Tag (1 bis 31)
- mm ≙ Monat(1 bis 12)
- $yy \triangleq$ Jahr ausgehend von 20yy (2000 bis 2099)
- $xx \triangleq$ (reserviert)
- . \triangleq (reserviert)
- $0 \triangleq$ Füllzeichen Null (0)

Name	Datentyp	Wordlänge
QWord	ssMMhhWDddmmyyxx	1 Register von 64-Bit
Word (mm,dd,yy,hh,MM)	mm,dd,yy,hh,MM	5 Register von je 16-Bit
Word (mm,dd,yy,hh,MM,ss)	mm,dd,yy,hh,MM,ss	6 Register von je 16-Bit
Word (yy,mm,dd,hh,MM,ss)	yy,mm,dd,hh,MM,ss	6 Register von je 16-Bit
Word (dd,mm,yy,hh,MM,ss)	dd,mm,yy,hh,MM,ss	6 Register von je16-Bit
Float (mmddyy.0,hhMMss.0)	mmddyy.0,hhMMss	2 Register von je 32-Bit
Float (yy,mm,dd,hh,MM,ss)	yy,mm,dd,hh,MM,ss	6 Register von je 32-Bit
Unix	Anzahl Sekunden seit dem 1.1.1970 00:00:00 – ohne Angabe der UTC	1 Register von 32-Bit

6 FAQ

Dieses Kapitel enthält die wichtigsten Einstellungen und Fragestellungen, um Sie bei regelmäßig anfallenden Aufgaben zu unterstützen:

- ➡ 6.1 Normal- vs. Expertenmodus beim Modbus AFB (S. 43)
- ➡ 6.2 In wenigen Schritten FC1 als Modbus-Slave an COM2 parametrieren (Normalmodus) (S. 44)
- ➡ 6.3 Systemzeit über Modbus synchronisieren (Normalmodus) (S. 47)
- ➡ 6.4 Protokollfehler beheben (Meldung) (S. 49)

6.1 Normal- vs. Expertenmodus beim Modbus AFB

Hintergrund

Der Normalmodus dient zum komfortablen Parametrierung von Standardanwendungen. Darum sind im Normalmodus nicht alle Parameter und Exportwerte sichtbar und auch nicht alle Bearbeitungsmöglichkeiten verfügbar. Sie können bei Bedarf aber jederzeit über den Menüpunkt **Extras – Expertenmodus** in den Expertenmodus umschalten, der alle verfügbaren Parameter und Funktionen anbietet. Beachten Sie, dass Sie bei Änderungen ggf. nicht mehr in den Normalmodus zurückschalten können.

Unterschiede

Der wesentliche Unterschied bei Modbus zwischen Normal- und Expertenmodus ist, dass Sie im Normalmodus ausschließlich enCore-Gerät parametrieren können, die die Rolle des Slaves bzw. Servers übernehmen. Im Expertenmodus hingegen legen Sie pro Instanz eines AFB Modbus fest, ob das enCore-Gerät bei der Modbus-Kommunikation entweder der Master bzw. Client ist, oder als Slave bzw. Server kommuniziert. Der Parameter **Kommunikationsmodus** steht nur im Expertenmodus zur Verfügung.

Ein weiterer Unterschied ist die übersichtliche Parametrierung von Modbus-Listen im Normalmodus anhand der drei Registerkarten **Einstellungen**, **Liste der Bereiche** und **Registerliste**. Die Registerliste steht Ihnen auch im Expertenmodus zur Verfügung.

Im Expertenmodus parametrieren Sie wie gewohnt anhand von Verzweigungen des Parameterbaums. Da die Parametrierung einer Modbus-Liste im Expertenmodus sehr verzweigt und komplex werden kann, empfehlen wir, nur zum Parametrieren eines Masters bzw. Clients in den Expertenmodus zu wechseln.

6.2 In wenigen Schritten FC1 als Modbus-Slave an COM2 parametrieren (Normalmodus)

Hintergrund

Im Normalmodus können Sie ein enCore-Gerät in wenigen Schritten mithilfe des Modbus AFB als Modbus-Slave parametrieren. Wenn Sie eine neue Parametrierung für eine Standardanwendung erstellen, legen Sie bereits im Wizard fest, ob im Normalmodus keine, eine oder zwei Modbus-Listen zur Verfügung stehen. Pro Liste legt der Wizard in der Parametrierung eine Instanz des Modbus AFB **(Modbus 1/Modbus 2**) an.

Wenn Sie Modbus verwenden, ist in der Modbus-Liste **Modbus 1** bereits ein Registerbereich mit Exportregistern für typische Werte für eine Mengenumwertung vordefiniert. Bei zwei Modbus-Listen enthält die zweite Liste **Modbus 2** noch keine vordefinierten Register.

Das folgende Szenario veranschaulicht beispielhaft die Parametrierung im Normalmodus:

	Einstellung
enCore-Gerät:	FC1 mit Standardparametrierung

	Einstellung
Protokolltyp:	Modbus RTU
Schnittstelle:	COM 2 der CPU
Übertragungsrate:	9600 Baud
Übertragungseinstellungen:	8 Datenbits, gerade Parität, 1 Stoppbit
Slave-ID:	2
Beginn des Regis- terbereichs:	3000
Exportregister:	Normvolumen V _n , Normvolumendurchfluss Q _n , Meldung Alarm Umwertung
Registerlänge:	16-Bit

Vorgehen in wenigen Schritten

Im Folgenden sind nur die Modbus-relevanten Einstellungen beschrieben.

Im ersten Schritt legen Sie die Kommunikationseinstellungen fest:

- Erstellen Sie mit dem Wizard für den FC1 eine **Standard-Men**genumwertung für Gas mit 1 Modbus-Liste.
- ▶ Markieren Sie unter Z Start (E/A-Konfiguration) auf der Registerkarte E/A-Konfiguration den COM-Port CH2 der CPU3.
- Wählen Sie im unteren Bereich in der Auswahlliste CH2 den Eintrag COM-Port (einfach).
- ✓ Die **Baudrate** ist bereits korrekt auf **9600** Baud voreingestellt.
- Setzen Sie die **Parität** auf den Wert **gerade**.
- Öffnen Sie im Parameterfenster den Ordner WModbus 1 und wechseln Sie auf die Registerkarte Einstellungen.
- Wählen Sie als **Schnittstelle** den Eintrag **seriell**.
- Wählen Sie als Port den Eintrag CH2.COM-Port.
- ✓ Modbus RTU ist bereits korrekt als Protokolltyp voreingestellt.
- Tragen Sie als **Slave-ID** den Wert **2** ein.

Definieren Sie im zweiten Schritt die erforderlichen Exportregister:

Vorgehen 1: vorbelegte Register bearbeiten

Standardmäßig ist auf der Registerkarte Liste der Bereiche die Liste bereits als **Registerbereich** mit einer Registerlänge **16-Bit** vorbelegt.

- Wechseln Sie auf die Registerkarte **Registerliste**.
- Verschieben Sie die folgenden Exportregister mit dem Pfeilnach-oben-Symbol wie folgt:
 - V_n an Position 1
 - **Q**_n an Position 2
 - Alarm Volumenmessung an Position 3

Um alle anderen vorbelegten Register zu löschen, ...

- ... markieren Sie das Register an Position 4, halten Sie die [Shift]-Taste gedrückt und markieren Sie das letzte Register in der Liste..
- Mit einem Klick auf das X Entfernen-Symbol werden die markierten Register ohne Rückfrage gelöscht.

Um aufeinanderfolgende Registernummer zu vergeben, ...

- ... markieren Sie die 3 Exportregister: V_n, Q_n und Alarm Volumenmessung.
- Klicken Sie auf das E Nummerieren-Symbol und geben Sie als Startnummer 3000 ein.
- ✓ Das Szenario ist parametriert.

Vorgehen 2: neue Register definieren

Um alle von Elster vorbelegten Register zu löschen, verwenden wir einen kleinen Trick:

- Wechseln Sie auf die Registerkarte Liste der Registerbereiche.
- ▶ Wählen Sie für den vordefinierten **Bereich 1** den Wert **Archiv**bereich aus und anschließend (wieder) den Wert **Registerbereich**.
- ✓ Eine Registerlänge von 16-Bit ist bereits standardmäßig voreingestellt.

Um die neuen Register zu definieren, ...

- ...wechseln Sie auf die Registerkarte **Registerliste**.
- Öffnen Sie das Exportwertefenster im Ordner Schiene1.
- Ziehen Sie die folgenden Exportwerte per Drag-and-drop in die Registerliste:
 - **9** Berechnungen.V_n an Position 1
 - **Serechnungen.Qn** an Position 2
 - Alarm Volumenmessung an Position 3

Um aufeinanderfolgenden Registernummer zu vergeben, ...

- ... markieren Sie die 3 Exportregister: V_n, Q_n und Alarm Volumenmessung.
- Klicken Sie auf das E Nummerieren-Symbol und geben Sie als Startnummer den Wert 3000 ein.
- ✓ Das Szenario ist parametriert.

6.3 Systemzeit über Modbus synchronisieren (Normalmodus)

Hintergrund

Der Time Service ¹ ist für das Synchronisieren oder Stellen der geräte-internen Systemzeit zuständig. Voraussetzung ist, dass im Zeitservice die gewünschte(n) Zeitquelle(n) als Importwerte in den Parametern **Prim. externe Zeitquelle** und (optional) **Sek. externe Zeitquelle** hinterlegt sind. Um die Systemzeit eines Geräts abzugleichen, können Sie als verlässliche Zeitquellen NTP, Modbus oder DSfG-Zeit verwenden.

Damit ein enCore-Gerät seine Systemzeit mit der Modbus-Zeit abgleichen kann, parametrieren Sie im ersten Schritt das zugehörige Importregister im AFB Modbus und importieren die Modbus-Zeit im zweiten Schritt im Zeitservice als externe Zeitquelle.

¹ Die Funktionsweise des Time Serviceist detailliert im FC-Handbuch ↔ "Grundsystem mit SFBs" beschrieben.

Wir empfehlen den Zeitabgleich der Systemzeit über Modbus nur für den Fall, dass keine externe NTP-Quelle zur Verfügung steht.

Vorgehen in enSuite (in Kürze)

Die Parametrierung zeigen wir beispielhaft anhand folgenden Szenarios: Als primäre Zeitquelle dient ein Zeitserver, der seine aktuelle Zeit über Modbus bereitstellt.

Voraussetzung

• Kommunikationseinstellungen und Bereich der Modbus-Liste sind bereits parametriert.

Um im ersten Schritt das Importregister im III AFB Modbus zu definieren, ...

- Öffnen Sie die Parametrierung im Normalmodus.
- Wechseln im 🇱 Modbus auf die Registerkarte **Registerliste**.
- Markieren Sie die Zeile, vor die das Importregister eingefügt werden soll..

Sie können die Position auch nachträglich mit 🎓 nach oben und mit 🦑 unten verschieben.

- Legen Sie mit 4 ein neues Importregister an.
- In der Detailanzeige wählen Sie in der Auswahlliste Register <x> den Eintrag Import Datum und Uhrzeit aus.
- Geben Sie mit dem Parameter Zeitmodus an, ob Datum und Uhrzeit des Importregisters in UTC (Universal Time Coordinated) oder in Ortszeit vorliegen..
- Wenn die Daten in Ortszeit übertragen werden, wandelt das enCore-Gerät Datum und Uhrzeit zunächst in UTC um, bevor es Datum und Uhrzeit im Exportwert **1** [<Reg.-Nr.]<Name>: Import Datum und Zeit.Time bereitstellt.

Standardmäßig aktualisiert das Gerät den Exportwert **1** [<Reg.-Nr.]<Name>: Import Datum und Zeit.Time, sobald sich mindestens ein Wert im Importregister Datum und Zeit ändert. Um alternativ die Aktualisierung dieses Exportwerts gezielt über ein anderes Register zu steuern, ...

- ... aktivieren Sie das Kontrollkästchen Trigger-Register und geben Sie die gültige Nummer des Importregisters an.
- Nur wenn der Wert des angegebenen Trigger-Registers sich von Null (0) auf einen anderen Wert ändert, wird der Exportwert [<Reg.-Nr.]<Name>: Import Datum und Zeit.Time aktualisiert..

Um im zweiten Schritt die Modbus-Zeit im Time Service zuzuweisen,

- ... wechseln Sie im Ordner Allg. Einstellungen auf die Registerkarte Zeitservice.
- Im Bereich Externe Zeitquelle wählen Sie aus der Auswahlliste Prim. externe Zeitquelle das parametrierte Modbus-Register aus.
- Der Time Service synchronisiert die Systemzeit mit der Modbus-Zeit, wenn eine Übernahme nach den Zeitservice hinterlegten Regeln zulässig ist.

6.4 Protokollfehler beheben (Meldung)

Hintergrund

Master (seriell) oder Client (TCP/IP) überwachen die Kommunikation über Modbus. Sie stellen dann einen Übertragungsfehler fest, wenn entweder die Modbus-Kommunikation unterbrochen ist, oder der Datenimport bzw. Datenexport von mindestens einem Register nicht gelingt. In diesem Fall generiert der AFB die gleichnamige Meldung **Protokollfehler**. Die Meldung steht so lange an, bis alle Register dieser Modbus-Einheit wieder erfolgreich importiert bzw. exportiert werden können.

Wichtige Parameter für die Fehlererkennung sind der **Transaktionstimeout** (Master) und **Fehlerfilter** (Slave/Server). Beim **Transaktionstimeout** legen Sie die maximale Zeitspanne fest, die ein Master auf die Antwort eines Slaves wartet, bevor er einen Protokollfehler generiert. Beim Fehlerfilter geben Sie pro Slave bzw. Server an, wie oft der AFB versucht, ein Register zu im- bzw. exportieren (Round Robin-Verfahren), bevor Master bzw. Client die Meldung generiert.

Mögliche Ursachen und Abhilfen

- Das Gerät ist eingeschaltet, ist jedoch aufgrund fehlerhafter Parametrierung der Kommunikationsparameter nicht erreichbar.
- Stellen Sie sicher, dass die Kommunikationsparameter im Grundsystem und AFB Modbus zwischen Master und Slave bzw. Client und Server aufeinander abgestimmt sind.

ODER

[nur Slave/Server]

- Die Fehlertoleranz beim Datenimport oder Datenexport eines Registers ist zu niedrig.
- Erhöhen Sie testweise den Parameter Fehlerfilter unter:
 Modbus Communikationsmodus: Master oder Client Communikationsmodus: Ma

ODER

[Master und Slave]

- Mindestens ein Register ist auf einer der beiden Seiten falsch oder gar nicht parametriert.
- Schauen Sie am Bedienfeld des enCore-Geräts in die zum AFB Modbus zugehörige Anzeige und beobachten Sie, welche Register nicht regelmäßig aufgefrischt werden. Suchen Sie auf beiden Seiten bezüglich dieser Registernummern nach Fehlern in der jeweiligen Parametrierung.

ODER

[Master und Slave]

- Die Verkabelung ist defekt oder ein Kabelbruch liegt vor.
- Prüfen Sie die Verkabelung und tauschen Sie beschädigte Kabel aus.

ODER

[nur Master]

Das entfernte Gerät (Slave bzw. Server) verarbeitet Telegramme langsamer als erwartet. Erhöhen Sie testweise den Transaktionstimeout des Masters unter:

Modbus – D Kommunikationsmodus: Master oder Client, Registerkarte **Parameter**, Bereich**Schnittstelle**

7 Hinweise

7.1 Allgemeine Hinweise

Markenzeichen Dritter

Alle verwendeten und bzw. erwähnten Markennamen und Markenbezeichnungen sind Eigentum der jeweiligen Markeninhaber. Eine etwaige Erwähnung von Marken geschieht gutgläubig und ohne dadurch einen Anspruch ableiten zu wollen.

Lizenzen Dritter

Dieses Produkt enthält unter Umständen Materialien, einschließlich Software, von Drittlizenzgebern ("Drittmaterialien") oder leitet sich von diesen ab. Der Käufer darf die Drittmaterialien ausschließlich zusammen mit dem Produkt und im Rahmen der lizenzierten Nutzung verwenden. Eine eigenständige Nutzung oder die Integration in andere Software ist nicht gestattet. Für Drittmaterialien gelten möglicherweise zusätzliche oder andere Lizenzen, Beschränkungen und Verpflichtungen, die in Materialien enthalten sind, die den Drittmaterialien oder dem Produkt beigefügt sind, oder in der Datei Third_Party_Licenses enCore.pdf zu finden sind unter:

www.elster-instromet.com/de/allgemeine-geschaeftsbedingungen

Garantiebedingungen

Die aktuellen Garantiebestimmungen finden Sie in den Allgemeinen Geschäftsbedingungen, z.B. auf unserer Website unter:

www.elster-instromet.com/de/allgemeine-geschaeftsbedingungen

Technischer Support Flow Computer und Gasqualitätsmessung

Für technische Auskünfte sowie Reparaturen steht Ihnen unser Support von Elster Gas zur Verfügung.

Darüber hinaus sind unsere Mitarbeiter ständig an neuen Informationen und Erfahrungen interessiert, die sich aus der Anwendung ergeben und für die Verbesserung unserer Produkte wertvoll sein können.

Unseren technischen Support erreichen Sie unter:

Telefon: +49 231 937110-88

E-Mail: ElsterSupport@Honeywell.com

Weitere Informationen finden Sie auf unserer Support-Seite von Elster Gas:

www.elster-instromet.com/de/support

Sichere Kommunikation verwenden!

Verwenden Sie für das Senden vertraulicher Daten sichere Kommunikationswege, zum Beispiel E- Mail- Verschlüsselung.

So melden Sie eine Sicherheitslücke

Eine Sicherheitslücke ist definiert als ein Fehler oder Schwachpunkt der Software, der ausgenutzt werden kann, um den Betrieb oder die Sicherheit der Parametrier- oder Gerätesoftware zu beeinträchtigen oder an sensible Daten zu gelangen.

Honeywell untersucht alle Berichte über Sicherheitslücken, die Honeywell Produkte und Dienstleistungen betreffen. Weitere Informationen zur Honeywell-Sicherheitsrichtlinie finden Sie unter:

www.honeywell.com/product-security

Wenn Sie eine mögliche Sicherheitslücke eines Honeywell-Produkts melden möchten, folgen Sie bitte den Anweisungen auf der Honeywell Webseite unter:

www.honeywell.com/product-security

Informationen zu aktuellen Malware-Bedrohungen finden Sie unter:

www.honeywellprocess.com/en-US/support/Pages/securityupdates.aspx

ODER

Kontaktieren Sie Ihr lokales Honeywell Process Solutions Customer Contact Center (CCC) oder unseren technischen Support für Elster Gas.

So geben Sie Feedback zur Benutzerdokumentation

Wir sind immer sehr an Ihren Anmerkungen, Korrekturen oder Verbesserungsvorschlägen zur Dokumentation der Elster Flow Computer und Gasqualitätsmessung interessiert. Bitte senden Sie Ihr Feedback an unseren technischen Support von Elster Gas:

ElsterSupport@Honeywell.com

Verwenden Sie diese E-Mail-Adresse, um Feedback zu geben oder um Fehler und Auslassungen in der Dokumentation zu melden.

Wissensartikel im Honeywell Support Portal

Elster Gas stellt Antworten zu häufig gestellten Fragen sowie speziellen Tipps und Tricks in kurzen Artikeln für verschiedene Produktserien auf dem Honeywell Support Portal zur Verfügung.

www.honeywellprocess.com/support

Die Wissensartikel werden ständig erweitert.

7.2 enCore-Handbücher auf einen Blick

Die Benutzerdokumentation des enCore FC ist modular aufgebaut. Die enCore-Handbücher stehen (in verschiedenen Sprachen) zum Download in unserer Docuthek bereit.

www.docuthek.com

Handbücher, für die in den folgenden Tabellen eine Bestellnummer angegeben ist, können Sie als gedrucktes Exemplar bei Elster Gas bestellen. Beachten Sie, dass Sicherheitshinweise ausschließlich in der "Betriebsanleitung" enthalten sind.

Für die FC-Geräteserie werden generell folgende Handbücher unterschieden.

Bei Verwendung im gesetzlichen Messwesen

Die rechtlich relevanten Funktionen und Eigenschaften sind für jeden Gerätetyp in einem separaten Handbuch beschrieben. Bei Verwendung des Geräts im gesetzlichen Messwesen ist das zugehörige Handbuch als gedrucktes Exemplar im Auslieferungszustand enthalten.

Titel	ZM1	BM1	MC1	DC1	FC1
ZM1 – Verwendung im ge- setzlichen Messwesen (Bestellnummer ZM1–ULM–DE) ¹	\checkmark	_	_	_	_
BM1 – Verwendung im ge- setzlichen Messwesen ² (Bestellnummer BM1-ULM-DE)	-	\checkmark	_	-	-
FC1 – Instructions for Use in Legal Metrology (Bestellnummer FC1–ULM–EN) ³	_	_	_	_	\checkmark
Geräteserie enCore FC – DSfG- DFÜ Signiereinheit: Verwendung im gesetzlichen Messwesen ⁴ (Bestellnummer NFC-ULMSIG2-DE)	\checkmark	-	_	_	_

¹ gemäß (EU-)Baumusterprüfbescheinigung als Zu-

standsmengenumwerter und Belastungsregistriergerät

² gemäß Baumusterprüfbescheinigung als Brennwertmengenumwerter und Belastungsregistriergerät

 $^{\rm 3}$ gemäß EU type examination certificate als electronic gas-volume conversion device (EVCD)

⁴ gemäß DSfG-DFÜ Signiereinheit als Zusatzfunktion aufgenommen in ZM1 EU-Baumusterprüfbescheinigung

Titel	ZM1	BM1	MC1	DC1	FC1
Geräteserie enCore FC – DSfG- DFÜ Signiereinheit: Verwendung im gesetzlichen Messwesen ¹ (Bestellnummer NFC-ULMSIG-DE)	_	_	~	\checkmark	_

Basishandbücher

In diesen Handbüchern sind Montage, Installation, Inbetriebnahme, Konfiguration, Wartung und Basisfunktionen dokumentiert.

Titel	ZM1	BM1	MC1	DC1	FC1
Betriebsanleitung ² (im Auslieferungszustand enthalten)	~	\checkmark	\checkmark	\checkmark	\checkmark
Konfiguration der Gerätesoftware ³	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Grundsystem mit SFBs ⁴	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Einzelne AFBs

Parametrierung, Funktionsweise und Bedienung sind für jeden AFB in einem eigenen Handbuch beschrieben. Diese Handbücher beschreiben immer den maximalen Funktionsumfang eines AFB. Welche AFBs für ein Gerät notwendig bzw. welche AFBs optional einsetzbar sind, hängt dabei vom individuellen Gerätetyp ab.

Titel	ZM1	BM1	MC1	DC1	FC1
Flow Conversion AFB	\checkmark	\checkmark	_	-	\checkmark

¹ gemäß Baumusterprüfbescheinigung als DSfG-DFÜ Signiereinheit

 $^{^{\}rm 2}$ Montage, Installation, Inbetriebnahme und Wartung eines enCore FC-Geräts

³ Parametrier- und Analysesoftware enSuite, den Download der Gerätesoftware und weitere Servicemaßnahmen

⁴ Grundsystem mit den Basisfunktionalitäten der Gerätesoftware, z.B. die Verwaltung der Systemressourcen und E/A-Karten oder die Ankopplung an andere Geräte über digitale Protokolle zuständig.

Titel	ZM1	BM1	MC1	DC1	FC1
Gas Quality AFB	\checkmark	\checkmark	_	-	\checkmark
Station AFB	\checkmark	\checkmark	\checkmark	-	\checkmark
DSfG AFB	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Notification AFB	\checkmark	\checkmark	\checkmark	_	\checkmark
Modbus AFB	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
IEC60870 AFB	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
IEC60870 AFB Kompatibilitätsliste	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Weitere Handbücher

Dazu gehören Handbücher, die keinem exklusivem Bezug zum enCore FC haben, wie die Montage und Einrichtung des (externen) Universalmodems.

Titel	ZM1	BM1	MC1	DC1	FC1
Universalmodem (UMM) ¹	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

7.2.1 Aktuelle Handbücher von Docuthek herunterladen

Elster Gas stellt die Benutzerdokumentation wie Handbücher, Zertifikate, Datenblätter, technische Informationen für verschiedene Gerätetypen in der Docuthek zur Verfügung. Die Dokumente werden regelmäßig aktualisiert:

www.docuthek.com

Verwenden Sie den Gerätetyp als Suchbegriff, z.B. ${\bf enCore}$ ${\bf Z}$ ${\bf M}$ ${\bf 1}$.

¹ Montage, Installation und die Inbetriebnahme des (externen) Universalmodems (kurz: UMM) mit Geräten der enCore FC- und der gas-net-Geräteserie

PDF nach Download überprüfen

Sie können SHA-1-Prüfsummeninformationen verwenden, um die Dateiintegrität eines PDF nach dem Download mit einem geeigneten Tool zu überprüfen.

Den Sollwert der SHA-1-Prüfsumme zu einem PDF finden Sie in der Docuthek in den Detailinformationen im Abschnitt **Bemerkung** oder – wenn Sie das PDF von der Elster-Instromet-Website heruntergeladen haben – in Klammern neben dem Download-Link.

-				٩.
 	_	_	-	
12				
17				
	4			

Welche Handbücher sind für frühere Geräte-Softwareversionen relevant?

In der Docuthek sind nur die aktuellen Handbücher verfügbar. Wenn Sie eine ältere Softwareversion verwenden, können Sie diese Handbücher für jede Version in der Software-Historie auf der Elster-Instromet-Website nachschlagen. Die Softwarehistorie ist für Produktreleases seit 2020 im Downloadbereich des jeweiligen Gerätetyps als PDF-Datei verfügbar.

www.elster-instromet.com/de/encore

8 Index

lisieren 47

т

А

Anzeige und Bedienung 31 Anzeigenübersicht 32

D

Datenexport 15 Datenimport 15 Datentyp Bitleisten/Status 41 Messwert 41 Zähler/Eventzähler 41

F

FAQs 43

Ν

Navigation (enCore-Gerät) 31

0

Online-Hilfe aufrufen 5

Ρ

Protokollfehler beheben 49 Protokollfehler Ursachen 50

R

Registerformate 40

S

Slave Beispielparametrierung 44 Systemzeit über Modbus aktua-

Telegrammtyp 0x03 39 0x04 40 0x06 40 0x08 39 0x10 39 Telegrammtypen 39

Ζ

Zeitabgleich 47